MHB Prop Logic Proof Help: (pv~q)vr; ~pv(q.~p)/q>r

chanimal
Messages
2
Reaction score
0
i need help with a proof:
(pv~q)vr
~pv(q.~p) / q>r

this is some propositional logic
thanks all
 
Physics news on Phys.org
Re: HElP with Propositional Logic!

chanimal said:
i need help with a proof:
(pv~q)vr
~pv(q.~p) / q>r

this is some propositional logic
thanks all

So, using $\LaTeX$ to typeset it nicely (you can right-click to see what code I used), we have that you need to prove

$(p\;\lor\sim\!q) \lor\, r$

$\sim\! p \, \lor (q \; \cdot \sim\! p) \qquad / \therefore \; q\supset r$

A quick shorter truth table analysis shows this to be a valid argument. So, we need to prove a horseshoe. The Conditional Proof allows us to prove a horseshoe. So, what would you assume?
 
Re: HElP with Propositional Logic!

Assuming only q for conditional proof does not lead us anywhere ??
 
Re: HElP with Propositional Logic!

chanimal said:
i need help with a proof
If you need a derivation in some formal system, please specify which system. See https://driven2services.com/staging/mh/index.php?threads/29/. Otherwise please describe what type of proof you need.

Also, is there any significance of a period in ".~p"?
 
Re: HElP with Propositional Logic!

Evgeny.Makarov said:
If you need a derivation in some formal system, please specify which system. See https://driven2services.com/staging/mh/index.php?threads/29/. Otherwise please describe what type of proof you need.

Also, is there any significance of a period in ".~p"?

This is one of my students. It's Copi's 19 Rules, plus Conditional Proof and Reductio ad Absurdam thrown in for good measure. The dot means AND.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top