- #1

- 1,728

- 13

## Homework Statement

[/B]

(a) Find the proper distance

(b) Find the proper area

(c) Find the proper volume

(d) Find the four-volume

## Homework Equations

## The Attempt at a Solution

__Part (a)__

Letting ##d\theta = dt = d\phi = 0##:

[tex] \Delta s = \int_0^R \left( 1-Ar^2 \right) dr = R \left(1 - \frac{AR}{2} \right) [/tex]

__Part (b)__At ##r=R##:

[tex]A = R^2 \int_0^{2\pi} d\phi \int_0^{\pi} sin \theta d\theta [/tex]

[tex]A = 4\pi R^2 [/tex]

__Part (c)__

[tex]V = \int_0^R r^2 \left( 1 - Ar^2 \right) dr \int_0^{\pi} sin \theta d\theta \int_0 ^{2\pi} d\phi [/tex]

[tex]V = \frac{4}{3} \pi R^3 \left( 1 - \frac{3}{5} AR^2 \right) [/tex]

__Part (d)__

[tex]V_4 = c\int_0^R r^2 \left( 1 - Ar^2\right)^2 dr \int_0^T dt \int_0^{\pi} sin \theta d\theta \int_0^{2\pi} d\phi [/tex]

[tex]V_4 = \frac{4}{3} \pi R^3 \cdot cT \cdot \left( 1 - \frac{6}{5}AR^2 + \frac{3}{7}A^2R^4 \right) [/tex]

Is this the correct method? This question seems a little too straightforward..