MHB Proper Subsets and Relations of Sets

saaddii
Messages
1
Reaction score
0
Q1: Write all proper subsets of S = {1, 2, 3, 4 }.

Q2: Let S = {1,2,5,6 }
Define a relation R on S of at least four order pairs, as (a,b)  R iff a*b is even (i.e. a multiply by b is even)

Q3: Let S = {x, y, z } and R is a relation defined on S such that
R={(y,y),(x,z),(z,x),(x,x),(z,z),(x,y),(y,x)}
Show that R is reflneed proper solution
 
Physics news on Phys.org
saaddii said:
Q1: Write all proper subsets of S = {1, 2, 3, 4 }.

Q2: Let S = {1,2,5,6 }
Define a relation R on S of at least four order pairs, as (a,b)  R iff a*b is even (i.e. a multiply by b is even)

Q3: Let S = {x, y, z } and R is a relation defined on S such that
R={(y,y),(x,z),(z,x),(x,x),(z,z),(x,y),(y,x)}
Show that R is reflneed proper solution

Q1:
A proper subset of $S$ is any subset of $S$ that is not equal to $S$.
So we have...
$\emptyset$
$\left\{1\right\}, \left\{2\right\}, \left\{3\right\}, \left\{4\right\}$
$\left\{1,2\right\}, \left\{1,3\right\}, \left\{1,4\right\}, \left\{2,3\right\}, \left\{2,4\right\}, \left\{3,4\right\}$
$\left\{1,2,3\right\}, \left\{2,3,4\right\}, \left\{1,3,4\right\}, \left\{1,2,4\right\}$

Q3:
R is reflective if for every element $s$ of $S$, $(s,s)$ is in $R$.
So what do you need to check?
For R to be reflexive, it must have elements $(x,x)$, $(y,y)$, and $(z,z)$.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top