Properties of Ackermann's function

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Function Properties
Click For Summary
SUMMARY

The discussion focuses on the properties of Ackermann's function, specifically demonstrating inequalities such as $A(x,y) > y$, $A(x,y+1) > A(x,y)$, and $A(x+1,y) \geq A(x,y+1)$. The user employs mathematical induction to prove these properties, detailing base cases and inductive steps for both variables $x$ and $y$. The conversation also seeks clarification on proving properties 3 and 6, indicating a desire for improvement in the proof techniques used.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with Ackermann's function and its properties
  • Basic knowledge of inequalities in mathematics
  • Experience with formal proof techniques in mathematics
NEXT STEPS
  • Study advanced properties of Ackermann's function
  • Learn about induction techniques in mathematical proofs
  • Explore the implications of Ackermann's function in computational theory
  • Investigate related functions and their growth rates
USEFUL FOR

Mathematicians, computer scientists, and students interested in theoretical computer science and the properties of recursive functions, particularly those studying the complexities of functions like Ackermann's.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to show the following properties of Ackermann's function:

  1. $A(x,y)>y$.
  2. $A(x,y+1)>A(x,y)$.
  3. If $y_2>y_1$, then $A(x,y_2)>A(x,y_1)$.
  4. $A(x+1, y) \geq A(x,y+1)$.
  5. $A(x,y)>x$.
  6. If $x_2>x_1$, then $A(x_2, y)>A(x_1, y)$.
  7. $A(x+2, y)>A(x,2y)$.
I have done the following:

  1. Induction on $x$.
  2. Induction on $x$.
    Base case: For $x=0$ we have $A(0,y+1)=y+2>y+1=A(0,y)$, by the definition of $A$.

    Inductive hypothesis: We assume that it holds for $x=n$, that means $A(n,y+1)>A(n,y)$ (I.H.x)

    Inductive step: We want to show that $A(n+1, y+1)>A(n+1,y)$.
    By the definition of $A$ and by the property $1$ we have $A(n+1, y+1)=A(n,A(n+1, y))>A(n+1,y)$.

  3. Induction on $y$.
    Base case: For $y=0$ we have $A(x+1, 0)=A(x,1)=A(x,0+1)$.

    Inductive hypothesis: We assume that it holds for $y=m$, that means $A(x+1, m) \geq A(x,m+1)$ (I.H.)

    Inductive step: We want to show that $A(x+1, m+1) \geq A(x,m+2)$.
    By the definition we have $A(x+1, m+1)=A(x,A(x+1, m))$. By the (I.H.) and the property $1$ we have $A(x+1, m) \geq A(x,m+1)>m+1 \Rightarrow A(x+1, m) \geq A(x,m+1) \geq m+2$. By the property $3$ we have $A(x,A(x+1,m)) \geq A(x,m+2)$. So, we cocnlude that $A(x+1, m+1) \geq A(x,m+2)$.
  4. By the property $4$ we have $A(x+1, y) \geq A(x,y+1)$. So, we have $A(x,y) \geq A(x-1, y+1) \geq A(x-2, y+2) \geq \dots \geq A(0,x+y)=x+y+1>x$.
    But how can we prove this formally??

  5. Induction on $y$.
    Base case: For $y=0$ we have by the property $6$ $A(x+2, 0)>A(x,0)=A(x,2 \cdot 0)$.

    Inductive hypothesis: We assume that it holds for $y=m$, that means $A(x+2, m)>A(x,2m)$ (I.H.)

    Inductive step: We want to show that $A(x+2, m+1) > A(x,2(m+1))$.
    By the definition of $A$ we have $A(x+2, m+1)=A(x+1, A(x+2, m))$. By the (I.H.) we have $A(x+2, m)>A(x,2m)$. By the property $3$ we have $A(x+2, m+1)>A(x+1, A(x,2m))$. By the property $4$ we have $A(x+1, A(x,2m)) \geq A(x,A(x,2m)+1)$ According to the property $1$, $A(x,2m)>2m \Rightarrow A(x,2m) \geq 2m+1$ or equivalently $A(x,2m)+1 \geq 2m+2=2(m+1)$. By the property $3$ we have $A(x,A(x,2m)+1) \geq A(x,2(m+1))$. So, $A(x+2, m+1)>A(x,2(m+1))$.

Is this correct?? Could I improve something?? (Wondering)

Could you give me some hints to prove the properties $3, 6$ ?? (Wondering)
 
Physics news on Phys.org
At the proof of the properties $3$ and $6$ do we use the properties $2$ and $4$ respectively?

But how? (Wondering)

For example, for the property $3$ would the proof be as follows?

Induction on $x$.

Base case: For $x=0$ we have $A(0,y_2)=y_2+1>y_1+1=A(0,y_1)$

Inductive hypothesis: We assume that it holds for $x=n$, that means $A(n,y_2)>A(n,y_1)$ (I.H)

Inductive step: We want to show that $A(n+1,y_2)>A(n+1,y_1)$.

How can we continue?
 
I tried again to prove the property $3$:

$y_2>y_1 \Rightarrow y_2=y_1+d, d>0 \Rightarrow d=y_2-y_1>0$

Induction on $d$.

Base case: For $d=1$ we have $A(x, y_2)=A(x, y_1+1) \overset{(2)}{>}A(x, y_1)$.

Inductive hypothesis: We assume that it holds for $d=k$, that means that $A(x, y_2)=A(x, y_1+k)>A(x, y_1)$ (I.H.)

Inductive step: We want to show that $A(x, y_1+(k+1))>A(x, y_1)$
$A(x, y_1+k+1)=A(x, (y_1+k)+1)\overset{(2)}{>}A(x, y_1+k)\overset{ (I.H.) }{>}A(x, y_1)$ Is this correct? Could I improve something? (Wondering)

The proof of the property $6$ is similar, isn't it?

On which variable do we use the induction for the property $5$ ?
 
For the property $5$ do we do the following?

We will show that $$A(x, y) \geq A(0, x+y)$$ by induction on $k=x+y$. Base case: For $k=0$ we have $x=y=0$, so $A(0, 0) \geq A(0, 0)$.

Inductive hypothesis: We assume that it stands for $k=n$, $A(x, y) \geq A(0, n)$. (I.H.)

Inductive step: We will show that it stands for $k=n+1$, $x+1+y=n+1$, that means that $A(x+1, y) \geq A(0, n+1)=(n+1)+1=n+2$.
We have that $A(x+1, y) >A(x, y) \overset{ (I.H.) }{\geq} A(0, n)=n+1$.
$A(x+1, y)>n+1 \Rightarrow A(x+1, y) \geq n+2$. So, we have that $A(x, y) \geq A(0, x+y)=x+y+1>x+y$. Is this correct?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K