MHB Prove :1/a^{2n+1}+1/b^{2n+1}+1/c^{2n+1}=1/{a^{2n+1}+b^{2n+1}+c^{2n+1}}

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The discussion centers on proving the equation involving the reciprocals of powers of three variables a, b, and c. It states that if the initial condition holds true, then the relationship for higher odd powers also holds for natural numbers n. Participants express greetings and share New Year wishes, indicating a friendly atmosphere. The mathematical proof is the primary focus, emphasizing the connection between the two equations. The thread highlights the importance of establishing this relationship in mathematical contexts.
Albert1
Messages
1,221
Reaction score
0
$given$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}$
$prove :$
$if \,\, n\in N\,\, then $
$\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}$
 
Mathematics news on Phys.org
Albert said:
$given$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}$
$prove :$
$if \,\, n\in N\,\, then $
$\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}$

Albert and others Happy new year

we have
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\dfrac{1}{a+b+c}$
$=>\frac{1}{a}+\frac{1}{b} = \frac{1}{a+b+c}- \frac{1}{c}$
$=>\frac{a+b}{ab} = - \frac{a+b}{c(a+b+c)}$
$=>(a+b) = 0\cdots(1)$ or $\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$=>c(a+b+c) + ab = 0$
or $(a+c)(b+c) = 0$
so from (1) and above we have $a= -b$ or $b= -c$ or $c= - a$
beacuse of symmetry taking $a = -b$ we have a + b+ c = c and both LHS and RHS of given expression $\frac{1}{c^{2n+1}}$ and same
hence proved
 
kaliprasad said:
Albert and others Happy new year

we have
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\dfrac{1}{a+b+c}$
$=>\frac{1}{a}+\frac{1}{b} = \frac{1}{a+b+c}- \frac{1}{c}$
$=>\frac{a+b}{ab} = - \frac{a+b}{c(a+b+c)}$
$=>(a+b) = 0\cdots(1)$ or $\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$=>c(a+b+c) + ab = 0$
or $(a+c)(b+c) = 0$
so from (1) and above we have $a= -b$ or $b= -c$ or $c= - a$
beacuse of symmetry taking $a = -b$ we have a + b+ c = c and both LHS and RHS of given expression $\frac{1}{c^{2n+1}}$ and same
hence proved
Happy new year to all MHB folks
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
960
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
1K