Prove :1/a^{2n+1}+1/b^{2n+1}+1/c^{2n+1}=1/{a^{2n+1}+b^{2n+1}+c^{2n+1}}

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the mathematical identity $\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}$ given the condition $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}$ for natural numbers $n$. Participants emphasize the importance of understanding the relationship between the terms and the implications of the identity in mathematical proofs. The discussion highlights the necessity of rigorous proof techniques in algebraic identities.

PREREQUISITES
  • Understanding of algebraic identities
  • Familiarity with the concept of natural numbers
  • Knowledge of mathematical proof techniques
  • Basic skills in manipulating fractions and equations
NEXT STEPS
  • Study algebraic manipulation techniques for complex identities
  • Explore mathematical proof strategies, particularly in algebra
  • Investigate the implications of identities in number theory
  • Learn about the properties of rational functions and their applications
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in advanced mathematical proofs and identities.

Albert1
Messages
1,221
Reaction score
0
$given$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}$
$prove :$
$if \,\, n\in N\,\, then $
$\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}$
 
Mathematics news on Phys.org
Albert said:
$given$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}$
$prove :$
$if \,\, n\in N\,\, then $
$\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}$

Albert and others Happy new year

we have
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\dfrac{1}{a+b+c}$
$=>\frac{1}{a}+\frac{1}{b} = \frac{1}{a+b+c}- \frac{1}{c}$
$=>\frac{a+b}{ab} = - \frac{a+b}{c(a+b+c)}$
$=>(a+b) = 0\cdots(1)$ or $\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$=>c(a+b+c) + ab = 0$
or $(a+c)(b+c) = 0$
so from (1) and above we have $a= -b$ or $b= -c$ or $c= - a$
beacuse of symmetry taking $a = -b$ we have a + b+ c = c and both LHS and RHS of given expression $\frac{1}{c^{2n+1}}$ and same
hence proved
 
kaliprasad said:
Albert and others Happy new year

we have
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\dfrac{1}{a+b+c}$
$=>\frac{1}{a}+\frac{1}{b} = \frac{1}{a+b+c}- \frac{1}{c}$
$=>\frac{a+b}{ab} = - \frac{a+b}{c(a+b+c)}$
$=>(a+b) = 0\cdots(1)$ or $\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$=>c(a+b+c) + ab = 0$
or $(a+c)(b+c) = 0$
so from (1) and above we have $a= -b$ or $b= -c$ or $c= - a$
beacuse of symmetry taking $a = -b$ we have a + b+ c = c and both LHS and RHS of given expression $\frac{1}{c^{2n+1}}$ and same
hence proved
Happy new year to all MHB folks
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
986
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
1K