MHB Prove :1/a^{2n+1}+1/b^{2n+1}+1/c^{2n+1}=1/{a^{2n+1}+b^{2n+1}+c^{2n+1}}

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
The discussion centers on proving the equation involving the reciprocals of powers of three variables a, b, and c. It states that if the initial condition holds true, then the relationship for higher odd powers also holds for natural numbers n. Participants express greetings and share New Year wishes, indicating a friendly atmosphere. The mathematical proof is the primary focus, emphasizing the connection between the two equations. The thread highlights the importance of establishing this relationship in mathematical contexts.
Albert1
Messages
1,221
Reaction score
0
$given$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}$
$prove :$
$if \,\, n\in N\,\, then $
$\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}$
 
Mathematics news on Phys.org
Albert said:
$given$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}$
$prove :$
$if \,\, n\in N\,\, then $
$\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}$

Albert and others Happy new year

we have
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\dfrac{1}{a+b+c}$
$=>\frac{1}{a}+\frac{1}{b} = \frac{1}{a+b+c}- \frac{1}{c}$
$=>\frac{a+b}{ab} = - \frac{a+b}{c(a+b+c)}$
$=>(a+b) = 0\cdots(1)$ or $\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$=>c(a+b+c) + ab = 0$
or $(a+c)(b+c) = 0$
so from (1) and above we have $a= -b$ or $b= -c$ or $c= - a$
beacuse of symmetry taking $a = -b$ we have a + b+ c = c and both LHS and RHS of given expression $\frac{1}{c^{2n+1}}$ and same
hence proved
 
kaliprasad said:
Albert and others Happy new year

we have
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\dfrac{1}{a+b+c}$
$=>\frac{1}{a}+\frac{1}{b} = \frac{1}{a+b+c}- \frac{1}{c}$
$=>\frac{a+b}{ab} = - \frac{a+b}{c(a+b+c)}$
$=>(a+b) = 0\cdots(1)$ or $\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$=>c(a+b+c) + ab = 0$
or $(a+c)(b+c) = 0$
so from (1) and above we have $a= -b$ or $b= -c$ or $c= - a$
beacuse of symmetry taking $a = -b$ we have a + b+ c = c and both LHS and RHS of given expression $\frac{1}{c^{2n+1}}$ and same
hence proved
Happy new year to all MHB folks
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top