MHB Prove :1/a^{2n+1}+1/b^{2n+1}+1/c^{2n+1}=1/{a^{2n+1}+b^{2n+1}+c^{2n+1}}

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The discussion centers on proving the equation involving the reciprocals of powers of three variables a, b, and c. It states that if the initial condition holds true, then the relationship for higher odd powers also holds for natural numbers n. Participants express greetings and share New Year wishes, indicating a friendly atmosphere. The mathematical proof is the primary focus, emphasizing the connection between the two equations. The thread highlights the importance of establishing this relationship in mathematical contexts.
Albert1
Messages
1,221
Reaction score
0
$given$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}$
$prove :$
$if \,\, n\in N\,\, then $
$\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}$
 
Mathematics news on Phys.org
Albert said:
$given$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}$
$prove :$
$if \,\, n\in N\,\, then $
$\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}$

Albert and others Happy new year

we have
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\dfrac{1}{a+b+c}$
$=>\frac{1}{a}+\frac{1}{b} = \frac{1}{a+b+c}- \frac{1}{c}$
$=>\frac{a+b}{ab} = - \frac{a+b}{c(a+b+c)}$
$=>(a+b) = 0\cdots(1)$ or $\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$=>c(a+b+c) + ab = 0$
or $(a+c)(b+c) = 0$
so from (1) and above we have $a= -b$ or $b= -c$ or $c= - a$
beacuse of symmetry taking $a = -b$ we have a + b+ c = c and both LHS and RHS of given expression $\frac{1}{c^{2n+1}}$ and same
hence proved
 
kaliprasad said:
Albert and others Happy new year

we have
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\dfrac{1}{a+b+c}$
$=>\frac{1}{a}+\frac{1}{b} = \frac{1}{a+b+c}- \frac{1}{c}$
$=>\frac{a+b}{ab} = - \frac{a+b}{c(a+b+c)}$
$=>(a+b) = 0\cdots(1)$ or $\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$\frac{1}{ab} + \frac{1}{c(+b+c)} = 0$
$=>c(a+b+c) + ab = 0$
or $(a+c)(b+c) = 0$
so from (1) and above we have $a= -b$ or $b= -c$ or $c= - a$
beacuse of symmetry taking $a = -b$ we have a + b+ c = c and both LHS and RHS of given expression $\frac{1}{c^{2n+1}}$ and same
hence proved
Happy new year to all MHB folks
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
924
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
1K