Prove 2x⁴+2y⁴+2z⁴ is the square of an integer

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Square
Click For Summary
SUMMARY

The discussion centers on proving that the expression 2x⁴ + 2y⁴ + 2z⁴ is the square of an integer, given that the sum of three integers x, y, and z equals zero. Participants engage in light-hearted banter while acknowledging the proof's validity. The consensus is that the mathematical assertion holds true, reinforcing the importance of collaborative problem-solving in mathematics.

PREREQUISITES
  • Understanding of integer properties and algebraic expressions
  • Familiarity with polynomial identities
  • Basic knowledge of mathematical proofs
  • Experience with zero-sum conditions in algebra
NEXT STEPS
  • Study polynomial identities and their applications in proofs
  • Explore integer properties in algebraic expressions
  • Learn about zero-sum conditions and their implications in mathematics
  • Investigate collaborative problem-solving techniques in mathematical discussions
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in exploring polynomial proofs and integer properties.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The sum of three integers $x,\,y,\,z$ is zero. Show that $2x^4+2y^4+2z^4$ is the square of an integer.
 
Mathematics news on Phys.org
My solution:

We have:

$$z=-(x+y)$$

Hence:

$$S=2x^4+2y^4+2z^4=2\left(x^4+y^4+(x+y)^4\right)$$

$$S=2\left(x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\right)$$

$$S=2\left(2x^4+2y^4+4x^3y+6x^2y^2+4xy^3\right)$$

$$S=4\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)$$

$$S=4\left(x^2+xy+y^2\right)^2$$

$$S=\left(2\left(x^2+xy+y^2\right)\right)^2$$

If $x$ and $y$ are integers, then S must be the square of an integer.
 
MarkFL said:
My solution:

We have:

$$z=-(x+y)$$

Hence:

$$S=2x^4+2y^4+2z^4=2\left(x^4+y^4+(x+y)^4\right)$$

$$S=2\left(x^4+y^4+x^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\right)$$

$$S=2\left(2x^4+2y^4+4x^3y+6x^2y^2+4xy^3\right)$$

$$S=4\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)$$

$$S=4\left(x^2+xy+y^2\right)^2$$

$$S=\left(2\left(x^2+xy+y^2\right)\right)^2$$

If $x$ and $y$ are integers, then S must be the square of an integer.
(Yes) Well done, MarkFL! So, do you want a cup of coffee or me singing a lullaby for you? Hehehe...:p
 
I feel I also deserve a cup of coffee as well because

We have
$(x^2 + y^2 + z^2)^2 = x^4 + y^4 + z^4 + 2x^2y^2 + 2 y^2 z^2 + 2 z^2 x^2 \cdots 1$

Now $(x^2 y^2 + x^2 z^2) = x^2((y+z)^2 – 2yz) = x^4 – 2x^2yz \dots2$ (as y+z = - x)

Similarly
$y^2 z^2 + y^2 x^2 = y^4 – 2y^2xz \cdots 3$
$z^2x^2 +z^2y^2 = z^4 – 2z^2xy \cdots4$

from (2) (3) and (4)
$2(x^2y^2 + y^2 z^2 + z^2 x^2) = (x^4 + y^4 + z^4 – 2xyz(x+y+z))$
= $x^4 + y^4 + z^4 ...5$
as x+y+z = 0
Putting value of $2(x^2y^2 + y^2 z^2 + z^2 x^2)$ from (5) in (1) we get the result
$2(x^4+y^4+z^4)= (x^2+y^2+z^2)^2$
 
anemone said:
(Yes) Well done, MarkFL! So, do you want a cup of coffee or me singing a lullaby for you? Hehehe...:p

Hmmm...one is a stimulant and the other a sedative...so perhaps I should have both so they will counteract one another. :D
 
kaliprasad said:
I feel I also deserve a cup of coffee as well because ...

Of course you do! This is what I prepared for you, kali, my friend!
c0f0b88f59f9d9a94de7bb772231a994.jpg

And this is for my sweetest admin, MarkFL!:D
c777b22432d40a6093ab9308683bc82c.jpg
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K