MHB Prove 2x⁴+2y⁴+2z⁴ is the square of an integer

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Square
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The sum of three integers $x,\,y,\,z$ is zero. Show that $2x^4+2y^4+2z^4$ is the square of an integer.
 
Mathematics news on Phys.org
My solution:

We have:

$$z=-(x+y)$$

Hence:

$$S=2x^4+2y^4+2z^4=2\left(x^4+y^4+(x+y)^4\right)$$

$$S=2\left(x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\right)$$

$$S=2\left(2x^4+2y^4+4x^3y+6x^2y^2+4xy^3\right)$$

$$S=4\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)$$

$$S=4\left(x^2+xy+y^2\right)^2$$

$$S=\left(2\left(x^2+xy+y^2\right)\right)^2$$

If $x$ and $y$ are integers, then S must be the square of an integer.
 
MarkFL said:
My solution:

We have:

$$z=-(x+y)$$

Hence:

$$S=2x^4+2y^4+2z^4=2\left(x^4+y^4+(x+y)^4\right)$$

$$S=2\left(x^4+y^4+x^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\right)$$

$$S=2\left(2x^4+2y^4+4x^3y+6x^2y^2+4xy^3\right)$$

$$S=4\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)$$

$$S=4\left(x^2+xy+y^2\right)^2$$

$$S=\left(2\left(x^2+xy+y^2\right)\right)^2$$

If $x$ and $y$ are integers, then S must be the square of an integer.
(Yes) Well done, MarkFL! So, do you want a cup of coffee or me singing a lullaby for you? Hehehe...:p
 
I feel I also deserve a cup of coffee as well because

We have
$(x^2 + y^2 + z^2)^2 = x^4 + y^4 + z^4 + 2x^2y^2 + 2 y^2 z^2 + 2 z^2 x^2 \cdots 1$

Now $(x^2 y^2 + x^2 z^2) = x^2((y+z)^2 – 2yz) = x^4 – 2x^2yz \dots2$ (as y+z = - x)

Similarly
$y^2 z^2 + y^2 x^2 = y^4 – 2y^2xz \cdots 3$
$z^2x^2 +z^2y^2 = z^4 – 2z^2xy \cdots4$

from (2) (3) and (4)
$2(x^2y^2 + y^2 z^2 + z^2 x^2) = (x^4 + y^4 + z^4 – 2xyz(x+y+z))$
= $x^4 + y^4 + z^4 ...5$
as x+y+z = 0
Putting value of $2(x^2y^2 + y^2 z^2 + z^2 x^2)$ from (5) in (1) we get the result
$2(x^4+y^4+z^4)= (x^2+y^2+z^2)^2$
 
anemone said:
(Yes) Well done, MarkFL! So, do you want a cup of coffee or me singing a lullaby for you? Hehehe...:p

Hmmm...one is a stimulant and the other a sedative...so perhaps I should have both so they will counteract one another. :D
 
kaliprasad said:
I feel I also deserve a cup of coffee as well because ...

Of course you do! This is what I prepared for you, kali, my friend!
c0f0b88f59f9d9a94de7bb772231a994.jpg

And this is for my sweetest admin, MarkFL!:D
c777b22432d40a6093ab9308683bc82c.jpg
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
23
Views
2K
Replies
15
Views
2K
Replies
2
Views
1K
Replies
5
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Back
Top