Prove 2x⁴+2y⁴+2z⁴ is the square of an integer

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Square
Click For Summary

Discussion Overview

The discussion revolves around the mathematical expression \(2x^4 + 2y^4 + 2z^4\) and whether it can be proven to be the square of an integer, given that the sum of three integers \(x, y, z\) is zero. The scope includes mathematical reasoning and problem-solving related to algebraic identities.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents a problem statement asking to show that \(2x^4 + 2y^4 + 2z^4\) is the square of an integer under the condition that \(x + y + z = 0\).
  • Other participants share their solutions, although the details of these solutions are not provided in the excerpts.
  • There are informal exchanges among participants, including light-hearted comments about deserving coffee, which do not contribute to the mathematical discussion.

Areas of Agreement / Disagreement

The discussion does not indicate any consensus or resolution regarding the proof of the statement. Multiple solutions are mentioned, but no agreement on their validity is evident.

Contextual Notes

The mathematical steps and reasoning behind the proposed solutions are not detailed, leaving potential gaps in understanding the proof process.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The sum of three integers $x,\,y,\,z$ is zero. Show that $2x^4+2y^4+2z^4$ is the square of an integer.
 
Mathematics news on Phys.org
My solution:

We have:

$$z=-(x+y)$$

Hence:

$$S=2x^4+2y^4+2z^4=2\left(x^4+y^4+(x+y)^4\right)$$

$$S=2\left(x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\right)$$

$$S=2\left(2x^4+2y^4+4x^3y+6x^2y^2+4xy^3\right)$$

$$S=4\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)$$

$$S=4\left(x^2+xy+y^2\right)^2$$

$$S=\left(2\left(x^2+xy+y^2\right)\right)^2$$

If $x$ and $y$ are integers, then S must be the square of an integer.
 
MarkFL said:
My solution:

We have:

$$z=-(x+y)$$

Hence:

$$S=2x^4+2y^4+2z^4=2\left(x^4+y^4+(x+y)^4\right)$$

$$S=2\left(x^4+y^4+x^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\right)$$

$$S=2\left(2x^4+2y^4+4x^3y+6x^2y^2+4xy^3\right)$$

$$S=4\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)$$

$$S=4\left(x^2+xy+y^2\right)^2$$

$$S=\left(2\left(x^2+xy+y^2\right)\right)^2$$

If $x$ and $y$ are integers, then S must be the square of an integer.
(Yes) Well done, MarkFL! So, do you want a cup of coffee or me singing a lullaby for you? Hehehe...:p
 
I feel I also deserve a cup of coffee as well because

We have
$(x^2 + y^2 + z^2)^2 = x^4 + y^4 + z^4 + 2x^2y^2 + 2 y^2 z^2 + 2 z^2 x^2 \cdots 1$

Now $(x^2 y^2 + x^2 z^2) = x^2((y+z)^2 – 2yz) = x^4 – 2x^2yz \dots2$ (as y+z = - x)

Similarly
$y^2 z^2 + y^2 x^2 = y^4 – 2y^2xz \cdots 3$
$z^2x^2 +z^2y^2 = z^4 – 2z^2xy \cdots4$

from (2) (3) and (4)
$2(x^2y^2 + y^2 z^2 + z^2 x^2) = (x^4 + y^4 + z^4 – 2xyz(x+y+z))$
= $x^4 + y^4 + z^4 ...5$
as x+y+z = 0
Putting value of $2(x^2y^2 + y^2 z^2 + z^2 x^2)$ from (5) in (1) we get the result
$2(x^4+y^4+z^4)= (x^2+y^2+z^2)^2$
 
anemone said:
(Yes) Well done, MarkFL! So, do you want a cup of coffee or me singing a lullaby for you? Hehehe...:p

Hmmm...one is a stimulant and the other a sedative...so perhaps I should have both so they will counteract one another. :D
 
kaliprasad said:
I feel I also deserve a cup of coffee as well because ...

Of course you do! This is what I prepared for you, kali, my friend!
c0f0b88f59f9d9a94de7bb772231a994.jpg

And this is for my sweetest admin, MarkFL!:D
c777b22432d40a6093ab9308683bc82c.jpg
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K