MHB Prove 2x2 Matrix Puzzle: No $S$ Exists for $S^n$

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Matrix Puzzle
Click For Summary
There is no 2x2 matrix \( S \) such that \( S^n = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) for any integer \( n \geq 2 \). The matrix \( T \) has rank 1, and its image and null space are both 1-dimensional, leading to \( T^2 = 0 \). If \( T = S^n \), then \( S \) must also have rank 1, as it cannot be rank 2 or 0. This implies that the image and null space of \( S \) are equal, resulting in \( S^2 = 0 \), which contradicts \( T \neq 0 \). Therefore, \( T \) has no \( n \)th roots for \( n \geq 2 \.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that there is no $2 \times 2$ matrix, $S$, such that

\[S^n= \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}\]

for any integer $n \geq 2$.
 
Mathematics news on Phys.org
lfdahl said:
Prove, that there is no $2 \times 2$ matrix, $S$, such that

\[S^n= \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}\]

for any integer $n \geq 2$.
[sp]Let $T = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}$. Then $T$ has rank $1$. Considering $T$ as a linear operator on a $2$-dimensional space, its image and its null space are both equal to the $1$-dimensional subspace spanned by the first basis vector $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ (and hence $T^2 = 0$, as you can easily check by squaring the matrix).

Suppose that $T = S^n$. Then $S$ cannot have rank $2$, because then it would be surjective and so every power of $S$ would also be surjective. Also, $S$ cannot have rank $0$, because then it would represent the zero operator and so $T$ would be $0$. So $S$ must have rank $1$.

If the vector $x$ is in the null space of $S$ then $Tx = S^nx = S^{n-1}Sx = 0$. So the null space of $S$ is contained in the null space of $T$. But since those spaces are both $1$-dimensional, they must be equal.

For any vector $y$, $Ty = S(S^{n-1}y)$. So the image of $S$ contains the image of $T$. But since those spaces are both $1$-dimensional, they must be equal.

Therefore the image and null space of $S$ are equal. So for any vector $y$, $S^2y = S(Sy) = 0$ and thus $S^2$ is the zero matrix. But if $S^2 = 0$ then $S^n = 0$ for all $n\geqslant 2$, contradicting the fact that $T \ne0$.

Thus $T$ has no $n$th roots, for $n\geqslant 2$.[/sp]
 
lfdahl said:
Prove, that there is no $2 \times 2$ matrix, $S$, such that

\[S^n= \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}\]

for any integer $n \geq 2$.

Suppose $S$ exists and has eigenvalues $\lambda_1$ and $\lambda_2$ (which could conceivably be complex).
Then $S^n$ has eigenvalues $\lambda_1^n$ and $\lambda_2^n$.
The given matrix is in Jordan Normal Form, showing that $\lambda_1^n=\lambda_2^n=0$, and therefore $\lambda_1=\lambda_2=0$.
So $S$ is either similar to the 0 matrix, or to the given nilpotent matrix.

If $S$ is similar to 0, then $S^n=0$, which is a contradiction.
And if $S$ is similar to the given nilpotent matrix, then $S^n=0$, which is also a contradiction.
Therefore there is no such $S$.
 
Opalg said:
[sp]Let $T = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}$. Then $T$ has rank $1$. Considering $T$ as a linear operator on a $2$-dimensional space, its image and its null space are both equal to the $1$-dimensional subspace spanned by the first basis vector $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ (and hence $T^2 = 0$, as you can easily check by squaring the matrix).

Suppose that $T = S^n$. Then $S$ cannot have rank $2$, because then it would be surjective and so every power of $S$ would also be surjective. Also, $S$ cannot have rank $0$, because then it would represent the zero operator and so $T$ would be $0$. So $S$ must have rank $1$.

If the vector $x$ is in the null space of $S$ then $Tx = S^nx = S^{n-1}Sx = 0$. So the null space of $S$ is contained in the null space of $T$. But since those spaces are both $1$-dimensional, they must be equal.

For any vector $y$, $Ty = S(S^{n-1}y)$. So the image of $S$ contains the image of $T$. But since those spaces are both $1$-dimensional, they must be equal.

Therefore the image and null space of $S$ are equal. So for any vector $y$, $S^2y = S(Sy) = 0$ and thus $S^2$ is the zero matrix. But if $S^2 = 0$ then $S^n = 0$ for all $n\geqslant 2$, contradicting the fact that $T \ne0$.

Thus $T$ has no $n$th roots, for $n\geqslant 2$.[/sp]

Hi, Opalg! - another excellent contribution from you! Thankyou for sharing your expertice in this challenge/puzzle forum!(Handshake)
 
I like Serena said:
Suppose $S$ exists and has eigenvalues $\lambda_1$ and $\lambda_2$ (which could conceivably be complex).
Then $S^n$ has eigenvalues $\lambda_1^n$ and $\lambda_2^n$.
The given matrix is in Jordan Normal Form, showing that $\lambda_1^n=\lambda_2^n=0$, and therefore $\lambda_1=\lambda_2=0$.
So $S$ is either similar to the 0 matrix, or to the given nilpotent matrix.

If $S$ is similar to 0, then $S^n=0$, which is a contradiction.
And if $S$ is similar to the given nilpotent matrix, then $S^n=0$, which is also a contradiction.
Therefore there is no such $S$.

Thanks a lot, I like Serena. You are fast on the trigger! - yet still hitting "bulls eye" with this very fine solution of yours. Thankyou for your participation!(Cool)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K