MHB Prove 2x2 Matrix Puzzle: No $S$ Exists for $S^n$

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Matrix Puzzle
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that there is no $2 \times 2$ matrix, $S$, such that

\[S^n= \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}\]

for any integer $n \geq 2$.
 
Mathematics news on Phys.org
lfdahl said:
Prove, that there is no $2 \times 2$ matrix, $S$, such that

\[S^n= \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}\]

for any integer $n \geq 2$.
[sp]Let $T = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}$. Then $T$ has rank $1$. Considering $T$ as a linear operator on a $2$-dimensional space, its image and its null space are both equal to the $1$-dimensional subspace spanned by the first basis vector $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ (and hence $T^2 = 0$, as you can easily check by squaring the matrix).

Suppose that $T = S^n$. Then $S$ cannot have rank $2$, because then it would be surjective and so every power of $S$ would also be surjective. Also, $S$ cannot have rank $0$, because then it would represent the zero operator and so $T$ would be $0$. So $S$ must have rank $1$.

If the vector $x$ is in the null space of $S$ then $Tx = S^nx = S^{n-1}Sx = 0$. So the null space of $S$ is contained in the null space of $T$. But since those spaces are both $1$-dimensional, they must be equal.

For any vector $y$, $Ty = S(S^{n-1}y)$. So the image of $S$ contains the image of $T$. But since those spaces are both $1$-dimensional, they must be equal.

Therefore the image and null space of $S$ are equal. So for any vector $y$, $S^2y = S(Sy) = 0$ and thus $S^2$ is the zero matrix. But if $S^2 = 0$ then $S^n = 0$ for all $n\geqslant 2$, contradicting the fact that $T \ne0$.

Thus $T$ has no $n$th roots, for $n\geqslant 2$.[/sp]
 
lfdahl said:
Prove, that there is no $2 \times 2$ matrix, $S$, such that

\[S^n= \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}\]

for any integer $n \geq 2$.

Suppose $S$ exists and has eigenvalues $\lambda_1$ and $\lambda_2$ (which could conceivably be complex).
Then $S^n$ has eigenvalues $\lambda_1^n$ and $\lambda_2^n$.
The given matrix is in Jordan Normal Form, showing that $\lambda_1^n=\lambda_2^n=0$, and therefore $\lambda_1=\lambda_2=0$.
So $S$ is either similar to the 0 matrix, or to the given nilpotent matrix.

If $S$ is similar to 0, then $S^n=0$, which is a contradiction.
And if $S$ is similar to the given nilpotent matrix, then $S^n=0$, which is also a contradiction.
Therefore there is no such $S$.
 
Opalg said:
[sp]Let $T = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}$. Then $T$ has rank $1$. Considering $T$ as a linear operator on a $2$-dimensional space, its image and its null space are both equal to the $1$-dimensional subspace spanned by the first basis vector $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ (and hence $T^2 = 0$, as you can easily check by squaring the matrix).

Suppose that $T = S^n$. Then $S$ cannot have rank $2$, because then it would be surjective and so every power of $S$ would also be surjective. Also, $S$ cannot have rank $0$, because then it would represent the zero operator and so $T$ would be $0$. So $S$ must have rank $1$.

If the vector $x$ is in the null space of $S$ then $Tx = S^nx = S^{n-1}Sx = 0$. So the null space of $S$ is contained in the null space of $T$. But since those spaces are both $1$-dimensional, they must be equal.

For any vector $y$, $Ty = S(S^{n-1}y)$. So the image of $S$ contains the image of $T$. But since those spaces are both $1$-dimensional, they must be equal.

Therefore the image and null space of $S$ are equal. So for any vector $y$, $S^2y = S(Sy) = 0$ and thus $S^2$ is the zero matrix. But if $S^2 = 0$ then $S^n = 0$ for all $n\geqslant 2$, contradicting the fact that $T \ne0$.

Thus $T$ has no $n$th roots, for $n\geqslant 2$.[/sp]

Hi, Opalg! - another excellent contribution from you! Thankyou for sharing your expertice in this challenge/puzzle forum!(Handshake)
 
I like Serena said:
Suppose $S$ exists and has eigenvalues $\lambda_1$ and $\lambda_2$ (which could conceivably be complex).
Then $S^n$ has eigenvalues $\lambda_1^n$ and $\lambda_2^n$.
The given matrix is in Jordan Normal Form, showing that $\lambda_1^n=\lambda_2^n=0$, and therefore $\lambda_1=\lambda_2=0$.
So $S$ is either similar to the 0 matrix, or to the given nilpotent matrix.

If $S$ is similar to 0, then $S^n=0$, which is a contradiction.
And if $S$ is similar to the given nilpotent matrix, then $S^n=0$, which is also a contradiction.
Therefore there is no such $S$.

Thanks a lot, I like Serena. You are fast on the trigger! - yet still hitting "bulls eye" with this very fine solution of yours. Thankyou for your participation!(Cool)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
1K
Replies
8
Views
3K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
10
Views
2K
Back
Top