[sp]Let $T = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}$. Then $T$ has rank $1$. Considering $T$ as a linear operator on a $2$-dimensional space, its image and its null space are both equal to the $1$-dimensional subspace spanned by the first basis vector $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ (and hence $T^2 = 0$, as you can easily check by squaring the matrix).
Suppose that $T = S^n$. Then $S$ cannot have rank $2$, because then it would be surjective and so every power of $S$ would also be surjective. Also, $S$ cannot have rank $0$, because then it would represent the zero operator and so $T$ would be $0$. So $S$ must have rank $1$.
If the vector $x$ is in the null space of $S$ then $Tx = S^nx = S^{n-1}Sx = 0$. So the null space of $S$ is contained in the null space of $T$. But since those spaces are both $1$-dimensional, they must be equal.
For any vector $y$, $Ty = S(S^{n-1}y)$. So the image of $S$ contains the image of $T$. But since those spaces are both $1$-dimensional, they must be equal.
Therefore the image and null space of $S$ are equal. So for any vector $y$, $S^2y = S(Sy) = 0$ and thus $S^2$ is the zero matrix. But if $S^2 = 0$ then $S^n = 0$ for all $n\geqslant 2$, contradicting the fact that $T \ne0$.
Thus $T$ has no $n$th roots, for $n\geqslant 2$.[/sp]