Prove ##(a\cdot b)\cdot c =a\cdot (b \cdot c)## using Peano postulates

Click For Summary
The discussion focuses on proving the associative property of multiplication, specifically that (a·b)·c = a·(b·c), using Peano postulates. A set G is defined to include natural numbers z for which the associative property holds for all x and y in the natural numbers. The proof establishes that 1 is in G and demonstrates that if r is in G, then s(r) is also in G, thereby showing that G encompasses all natural numbers. Consequently, it concludes that for any natural numbers a, b, and c, the associative property holds true. The proof is affirmed as valid by participants in the discussion.
issacnewton
Messages
1,035
Reaction score
37
Homework Statement
Prove ##(a\cdot b)\cdot c =a\cdot (b \cdot c)## using Peano postulates given that ##a,b,c \in \mathbb{N}##
Relevant Equations
The book I am using ("The real numbers and real analysis" by Ethan Bloch) defines Peano postulates little differently.

Following is a set of Peano postulates I am using. (Axiom 1.2.1 in Bloch's book)


There exists a set ##\mathbb{N}## with an element ##1 \in \mathbb{N}## and a function ##s: \mathbb{N} \rightarrow \mathbb{N} ## that satisfy the following three properties.

1) There is no ##n \in \mathbb{N}## such that ##s(n) = 1##
2) The function ##s## is injective.
3) Let ##G \subseteq \mathbb{N}## be a set. Suppose that ##1 \in G##, and that if ##g \in G## then ##s(g) \in G##. Then ## G = \mathbb{N} ##

And addition operation is given in Theorem 1.2.5 as follows

There is a unique binary operation ##+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} ## that satisfies the following two properties for all ##n, m \in \mathbb{N} ##

a. ## n + 1 = s(n) ##
b. ## n + s(m) = s(n + m) ##

Multiplication operation is given in Theorem 1.2.6 as follows

There is a unique binary operation ## \cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N} ## that satisfies the following two properties for all ##n, m \in \mathbb{N} ##

a. ##n \cdot 1 = n ##
b. ## n \cdot s(m) = (n \cdot m) + n ##

I am also going to assume following results for this proof.
Identity law for multiplication for ##a \in \mathbb{N} ##
$$ a \cdot 1 = a = 1 \cdot a $$

Distributive law

$$ c \cdot (a + b) = c \cdot a + c \cdot b $$

=============================================================
with this background, we proceed to the proof. Let us define a set

$$ G = \{ z \in \mathbb{N} | \; x, y \in \mathbb{N}\; (x \cdot y) \cdot z = x \cdot (y \cdot z) \} $$

We want to prove that ##G = \mathbb{N} ##. For this purpose, we will use part 3) of Peano postulates given above. Obviously, ## G \subseteq \mathbb{N} ##. Let ##x, y \in \mathbb{N}## be arbitrary. Using Identity law for multiplication, we have ##(x \cdot y) \cdot 1 = (x \cdot y) ## and ##x \cdot (y \cdot 1) = x \cdot y = (x \cdot y) ##. Since ##1 \in \mathbb{N}## from Peano postulates, it follows that ##1 \in G##. Suppose ## r \in G##. So ##r \in \mathbb{N}## and

$$ \forall x,y \in \mathbb{N} \; \bigl[ (x \cdot y) \cdot r = x \cdot (y \cdot r) \bigr] \cdots\cdots (1) $$

Now, let ##x, y \in \mathbb{N}## be arbitrary. Now, using addition definition part a), ##(x \cdot y) \cdot s(r) = (x \cdot y) \cdot (r+1)##. Now using Distributive law, we have ##(x \cdot y) \cdot s(r) = (x \cdot y) \cdot r + (x \cdot y) \cdot 1##. Since ##r \in G##, we have , from equation (1), that ##(x \cdot y) \cdot r = x \cdot (y \cdot r) ##. So, we have ##(x \cdot y) \cdot s(r) = x \cdot (y \cdot r) + (x \cdot y) \cdot 1##. And using Identity law for multiplication, ##(x \cdot y) \cdot 1 = (x \cdot y)##. It means that ##(x \cdot y) \cdot s(r) = x \cdot (y \cdot r) +(x \cdot y)##. Now, using distributive law, ##(x \cdot y) \cdot s(r) = x \cdot (y \cdot r + y)##. And, using definition of multiplication part b), ##y \cdot r + y = y \cdot s(r)##. So, we have ##(x \cdot y) \cdot s(r) = x \cdot (y \cdot s(r))##. And since ##x, y \in \mathbb{N}## are arbitrary, it proves that

$$ \forall x,y \in \mathbb{N} \; \bigl[ (x \cdot y) \cdot s(r) = x \cdot (y \cdot s(r)) \bigr] $$

Since ##s(r) \in \mathbb{N}##, this proves that ##s(r) \in G##. So, ##r \in G## implies that ## s(r) \in G##. Using part 3) of the Peano postulates, it follows that ## G = \mathbb{N}##.

Now, if ##a,b,c \in \mathbb{N}##, we have ##c \in G## and it follows that ##(a\cdot b)\cdot c =a\cdot (b \cdot c)##.

Is this a valid proof ?

Thanks
 
Physics news on Phys.org
Looks good.
 
  • Like
Likes bhobba and issacnewton
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...