Princess Shaina
- 1
- 0
Prove that
a-(b∩ c)=(a-b)u(a-c)
a-(b∩ c)=(a-b)u(a-c)
Princess Shaina said:Prove that
a-(b∩ c)=(a-b)u(a-c)
\begin{array}{ccccc} 1. & a - (b \cap c) && 1. & \text{LHS} \\ <br /> 2. & a \cap \overline{(b \cap c)} && 2. & \text{Def. subtr'n} \\ <br /> 3. & a \cap ( \overline b \cup \overline c) & & 3. & \text{DeMorgan} \\<br /> 4. & (a \cap{\overline b}) \cup (a \cap {\overline c}) && 4. & \text{Distributive} \\<br /> 5. & (a - b) \cup (a - c) && 5. & \text{Def. subtr'n} \\<br /> &&&& \text{RHS}\end{array}<br />Princess Shaina said:Prove that
a-(b∩ c)=(a-b)u(a-c)