MHB Prove ABC is an equilateral triangle

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $ABC$ is an equilateral triangle if $\dfrac{\cos A+\cos B+\cos C}{\sin A+\sin B+\sin C}=3\cot A \cot B \cot C$.
 
Mathematics news on Phys.org
Let $ABC$ be a triangle inscribed in a circle of center O (circumcenter) and circumscribed in a circle of center I (incenter). We know

$\cos A+\cos B+\cos C=1+\dfrac{r}{R}$ where $r$ and $R$

$\sin A+\sin B+\sin C=\dfrac{s}{R}$ where $s$ represents the triangle's semi-perimeter

$\cos A \cos B \cos C=\dfrac{s^2-(2R+r)^2}{4R^2}$

$\sin A \sin B \sin C=\dfrac{rs}{2R^2}$

$2r\le R$ (Euler's inequality)

$s^2\le 4R^2+4Rr+3r^2$ (Gerretsen inequality)

We try to show

$\dfrac{\cos A+\cos B+\cos C}{\sin A+\sin B+\sin C}\le 3\cot A \cot B \cot C$

$\dfrac{1+\dfrac{r}{R}}{\dfrac{s}{R}}\le 3\left(\dfrac{\dfrac{s^2-(2R+r)^2}{4R^2}}{\dfrac{rs}{2R^2}} \right)$

$5r^2+14rR+12R^2 \le 3s^2 \le 9r^2+12rR+12R^2$ which implies $R\le 2r$

This is impossible but that suggests $R=2r$must be true or $\dfrac{\cos A+\cos B+\cos C}{\sin A+\sin B+\sin C}= 3\cot A \cot B \cot C$. This can happen if and only if $ABC$ is an equilateral triangle.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top