Prove $\displaystyle \lim_{x \to 0}\frac{x}{1 + \sin^2(x)} = 0$

  • Context: MHB 
  • Thread starter Thread starter Amad27
  • Start date Start date
  • Tags Tags
    Limit Proof Sine
Click For Summary
SUMMARY

The limit $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} = 0$ can be proven using the inequality $\left|\frac{x}{1 + \sin^2 x}\right| \le |x|$. By setting $\delta = \varepsilon$, it follows that for all $x$ such that $0 < |x| < \delta$, the limit approaches zero. The discussion highlights the importance of correctly applying inequalities and recognizing the properties of the sine function in limit proofs.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with the properties of the sine function
  • Knowledge of epsilon-delta definitions of limits
  • Basic algebraic manipulation of inequalities
NEXT STEPS
  • Study the epsilon-delta definition of limits in detail
  • Learn about the properties of the sine function and its behavior near zero
  • Explore examples of limit proofs using inequalities
  • Investigate common pitfalls in limit proofs involving trigonometric functions
USEFUL FOR

Students of calculus, mathematics educators, and anyone interested in mastering limit proofs, particularly those involving trigonometric functions.

Amad27
Messages
409
Reaction score
1
Hello:

Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$

Let $|x| < 1 \implies -1 < x < 1$

$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $

$(1) |x| < \delta_1$

$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$

$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$

Finally,

$\epsilon(\sin^2(-1) + 1) = \delta_1$

Therefore,

$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$
 
Physics news on Phys.org
Olok said:
Hello:

Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$

Let $|x| < 1 \implies -1 < x < 1$

$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $

$(1) |x| < \delta_1$

$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$

$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$

Finally,

$\epsilon(\sin^2(-1) + 1) = \delta_1$

Therefore,

$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$

Hi Olok,

I'm not sure what you're doing in you're analysis but here's an outline for proving the result. Observe that

$$\left|\frac{x}{1 + \sin^2 x}\right| \le |x| \quad \text{for all $x$}.$$

Hence, given $\varepsilon > 0$, setting $\delta = \varepsilon$ forces

$$\left|\frac{x}{1 + \sin^2 x} - 0\right| < \varepsilon$$

for all $x$ such that $0 < |x| < \delta$.

Fill in the details of this argument.
 
Euge said:
Hi Olok,

I'm not sure what you're doing in you're analysis but here's an outline for proving the result. Observe that

$$\left|\frac{x}{1 + \sin^2 x}\right| \le |x| \quad \text{for all $x$}.$$

Hence, given $\varepsilon > 0$, setting $\delta = \varepsilon$ forces

$$\left|\frac{x}{1 + \sin^2 x} - 0\right| < \varepsilon$$

for all $x$ such that $0 < |x| < \delta$.

Fill in the details of this argument.

Yes I did recognize that.

I know you can conclude if $|x| = \delta = \epsilon$ it will conclude the proof, but I was thinking if my way could work.

Can you tell me, which part is confusing? I really want to try it the way I was doing it.

Thanks!
 
Olok said:
Yes I did recognize that.

I know you can conclude if $|x| = \delta = \epsilon$ it will conclude the proof, but I was thinking if my way could work.

Can you tell me, which part is confusing? I really want to try it the way I was doing it.

Thanks!

One of the main issues is the inequality

$$\frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$$

Since the sine is odd, the fractions on the left- and right-hand sides of the inequality are equal. So the above cannot hold.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K