Prove $\displaystyle \lim_{x \to 0}\frac{x}{1 + \sin^2(x)} = 0$

  • Context: MHB 
  • Thread starter Thread starter Amad27
  • Start date Start date
  • Tags Tags
    Limit Proof Sine
Click For Summary

Discussion Overview

The discussion revolves around proving the limit $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} = 0$. Participants explore different approaches to the proof, including inequalities and bounding techniques, while also addressing potential issues in reasoning.

Discussion Character

  • Debate/contested, Mathematical reasoning

Main Points Raised

  • One participant presents an argument using inequalities involving $\sin^2(x)$ to bound the expression $\frac{x}{1 + \sin^2(x)}$.
  • Another participant suggests a simpler approach by noting that $\left|\frac{x}{1 + \sin^2 x}\right| \le |x|$, proposing to set $\delta = \varepsilon$ for the proof.
  • A participant expresses uncertainty about their initial approach and seeks clarification on what is confusing in their reasoning.
  • Concerns are raised about the validity of a specific inequality involving $\sin^2(x)$, with a participant pointing out that the sine function's oddness implies that certain fractions in the inequality cannot hold.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the validity of the initial approach using inequalities, as one participant challenges the correctness of a specific inequality presented. Multiple competing views on how to approach the proof remain evident.

Contextual Notes

Some arguments depend on the properties of the sine function and the behavior of the limit as $x$ approaches 0, but these aspects are not fully resolved in the discussion.

Amad27
Messages
409
Reaction score
1
Hello:

Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$

Let $|x| < 1 \implies -1 < x < 1$

$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $

$(1) |x| < \delta_1$

$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$

$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$

Finally,

$\epsilon(\sin^2(-1) + 1) = \delta_1$

Therefore,

$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$
 
Physics news on Phys.org
Olok said:
Hello:

Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$

Let $|x| < 1 \implies -1 < x < 1$

$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $

$(1) |x| < \delta_1$

$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$

$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$

Finally,

$\epsilon(\sin^2(-1) + 1) = \delta_1$

Therefore,

$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$

Hi Olok,

I'm not sure what you're doing in you're analysis but here's an outline for proving the result. Observe that

$$\left|\frac{x}{1 + \sin^2 x}\right| \le |x| \quad \text{for all $x$}.$$

Hence, given $\varepsilon > 0$, setting $\delta = \varepsilon$ forces

$$\left|\frac{x}{1 + \sin^2 x} - 0\right| < \varepsilon$$

for all $x$ such that $0 < |x| < \delta$.

Fill in the details of this argument.
 
Euge said:
Hi Olok,

I'm not sure what you're doing in you're analysis but here's an outline for proving the result. Observe that

$$\left|\frac{x}{1 + \sin^2 x}\right| \le |x| \quad \text{for all $x$}.$$

Hence, given $\varepsilon > 0$, setting $\delta = \varepsilon$ forces

$$\left|\frac{x}{1 + \sin^2 x} - 0\right| < \varepsilon$$

for all $x$ such that $0 < |x| < \delta$.

Fill in the details of this argument.

Yes I did recognize that.

I know you can conclude if $|x| = \delta = \epsilon$ it will conclude the proof, but I was thinking if my way could work.

Can you tell me, which part is confusing? I really want to try it the way I was doing it.

Thanks!
 
Olok said:
Yes I did recognize that.

I know you can conclude if $|x| = \delta = \epsilon$ it will conclude the proof, but I was thinking if my way could work.

Can you tell me, which part is confusing? I really want to try it the way I was doing it.

Thanks!

One of the main issues is the inequality

$$\frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$$

Since the sine is odd, the fractions on the left- and right-hand sides of the inequality are equal. So the above cannot hold.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K