MHB Prove $\displaystyle \lim_{x \to 0}\frac{x}{1 + \sin^2(x)} = 0$

Amad27
Messages
409
Reaction score
1
Hello:

Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$

Let $|x| < 1 \implies -1 < x < 1$

$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $

$(1) |x| < \delta_1$

$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$

$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$

Finally,

$\epsilon(\sin^2(-1) + 1) = \delta_1$

Therefore,

$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$
 
Physics news on Phys.org
Olok said:
Hello:

Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$

Let $|x| < 1 \implies -1 < x < 1$

$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $

$(1) |x| < \delta_1$

$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$

$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$

Finally,

$\epsilon(\sin^2(-1) + 1) = \delta_1$

Therefore,

$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$

Hi Olok,

I'm not sure what you're doing in you're analysis but here's an outline for proving the result. Observe that

$$\left|\frac{x}{1 + \sin^2 x}\right| \le |x| \quad \text{for all $x$}.$$

Hence, given $\varepsilon > 0$, setting $\delta = \varepsilon$ forces

$$\left|\frac{x}{1 + \sin^2 x} - 0\right| < \varepsilon$$

for all $x$ such that $0 < |x| < \delta$.

Fill in the details of this argument.
 
Euge said:
Hi Olok,

I'm not sure what you're doing in you're analysis but here's an outline for proving the result. Observe that

$$\left|\frac{x}{1 + \sin^2 x}\right| \le |x| \quad \text{for all $x$}.$$

Hence, given $\varepsilon > 0$, setting $\delta = \varepsilon$ forces

$$\left|\frac{x}{1 + \sin^2 x} - 0\right| < \varepsilon$$

for all $x$ such that $0 < |x| < \delta$.

Fill in the details of this argument.

Yes I did recognize that.

I know you can conclude if $|x| = \delta = \epsilon$ it will conclude the proof, but I was thinking if my way could work.

Can you tell me, which part is confusing? I really want to try it the way I was doing it.

Thanks!
 
Olok said:
Yes I did recognize that.

I know you can conclude if $|x| = \delta = \epsilon$ it will conclude the proof, but I was thinking if my way could work.

Can you tell me, which part is confusing? I really want to try it the way I was doing it.

Thanks!

One of the main issues is the inequality

$$\frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$$

Since the sine is odd, the fractions on the left- and right-hand sides of the inequality are equal. So the above cannot hold.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K