MHB Prove Existence of $n$ for Integer $\sqrt{n^3+xn^2+yn+z}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Integer
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that for any integers $x,\,y,\,z$, there exists a positive integers $n$ such that $\sqrt{n^3+xn^2+yn+z}$ is not an integer.
 
Mathematics news on Phys.org
anemone said:
Prove that for any integers $x,\,y,\,z$, there exists a positive integers $n$ such that $\sqrt{n^3+xn^2+yn+z}$ is not an integer.

Solution of other:

Let $f(n)=n^3+xn^2+yn+z$. Find an integer $a$ large enough that $8a^3$ exceeds both $(x^2-4y)a^2-xa-z+\dfrac{1}{4}$ and $(4y-x^2)a^2-xa+z-\dfrac{1}{4}$, i.e.

$\begin{align*}f(4a^2)&=(4a^2)^3+x(4a^2)^2+y(4a^2)+z\\&=64a^6+16a^4x+4a^2y+z\end{align*}$

$\begin{align*}\left(8a^3+xa-\dfrac{1}{2}\right)^2&=64a^6+16a^3\left(xa-\dfrac{1}{2}\right)+x^2a^2-xa+\dfrac{1}{4}\\&=64a^6+16a^4x-8a^3+x^2a^2-xa+\dfrac{1}{4}\end{align*}$

$\begin{align*}\left(8a^3+xa+\dfrac{1}{2}\right)^2&=64a^6+16a^3\left(xa+\dfrac{1}{2}\right)+x^2a^2+xa+\dfrac{1}{4}\\&=64a^6+16a^4x+8a^3+x^2a^2+xa+\dfrac{1}{4}\end{align*}$

and

$-8a^3+x^2a^2-xa+\dfrac{1}{4}<4a^2y+z$ which gives $(x^2-4y)a^2-xa-z+\dfrac{1}{4}<8a^3$

whereas

$8a^3+x^2a^2+xa+\dfrac{1}{4}>4a^2y+z$ which gives $8a^3>(4y-x^2)a^2-xa+z-\dfrac{1}{4}$

therefore we get

$\left(8a^3+xa-\dfrac{1}{2}\right)^2<f(4a^2)<\left(8a^3+xa+\dfrac{1}{2}\right)^2$

So if $f(4a^2)$ is a square, then $f(4a^2)=(8a^3+xa)^2$, i.e., $(x^2-4y)a^2=z$. This cannot hold for more than one value of $a$ unless $4y=x^2$ and $z=0$. But then $f(n)=n\left(n+\dfrac{x}{2}\right)^2$; this is not a square if $n$ is a non-square different from $-\dfrac{x}{2}$.
 
anemone said:
Prove that for any integers $x,\,y,\,z$, there exists a positive integers $n$ such that $\sqrt{n^3+xn^2+yn+z}$ is not an integer.

this can be solved using modular arithmetic as below

If we can show that it cannot be for n = 1,2,3,4 then we are through
for n = 1 we have $f(1) = 1 + x + y+ z\cdots(1)$
for n= 2 we have $f(2) = 8 + 4x + 2y + z\cdots(2)$
$f(3) = 27 + 9x + 3y + +z\cdots(3)$
$f(4) = 64 + 16x + 4y + z\cdots(4)$
if f(1) and f(3) are perfect squares then from (1) and (3) we get $26+ 8x+ 2y \equiv 0 \pmod 4$ or $2y \equiv 2 \pmod 4\cdots(5)$
if f(2) and f(4) are perfect squares then from (2) and (4) we get $56+ 12x+ 2y \equiv 0 \pmod 4$ or $2y \equiv 0 \pmod 4\cdots(6)$
(5) and (6) cannot be satisfied at the same time so for n = 1 to 3 it cannot be a perfect square
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top