MHB Prove $\frac{1}{AB}=\frac{1}{AC}+\frac{1}{AD}$ in Geometry Challenge

M R
Messages
44
Reaction score
0
If ABCDEFG is a regular heptagon prove that $\frac{1}{AB}=\frac{1}{AC}+\frac{1}{AD}$.
 
Mathematics news on Phys.org
A regular polygon is cyclic. So a quadrilateral defined by any four points of the heptagon is also cyclic. Ptolemy's theorem states that the sum of the products
of two pairs of opposite equals the product of the diagonal for a cyclic quadrilateral.

Let $AB = CD = DE = x$ since they are sides of a regular polygon.
We know that $AC = CE = y$ and $AD = AE = z$. Now consider
the quadrilateral $ACDE$, and apply Ptolemy's theorem:

$$AC \cdot DE + CD \cdot AE = AD \cdot CE,$$ or using the notation, this becomes: $y x + x z = z y$. Or $x(y + z) = zy$. This further simplify to:
$\frac 1x = \frac{y + z}{zy} = \frac 1y + \frac 1z$. Therefore,
$\frac 1{AB} = \frac 1{AC} + \frac 1{AD}$
 
magneto said:
A regular polygon is cyclic. So a quadrilateral defined by any four points of the heptagon is also cyclic. Ptolemy's theorem states that the sum of the products
of two pairs of opposite equals the product of the diagonal for a cyclic quadrilateral.

Let $AB = CD = DE = x$ since they are sides of a regular polygon.
We know that $AC = CE = y$ and $AD = AE = z$. Now consider
the quadrilateral $ACDE$, and apply Ptolemy's theorem:

$$AC \cdot DE + CD \cdot AE = AD \cdot CE,$$ or using the notation, this becomes: $y x + x z = z y$. Or $x(y + z) = zy$. This further simplify to:
$\frac 1x = \frac{y + z}{zy} = \frac 1y + \frac 1z$. Therefore,
$\frac 1{AB} = \frac 1{AC} + \frac 1{AD}$

Neatly done. :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top