MHB Prove $\frac{1}{AB}=\frac{1}{AC}+\frac{1}{AD}$ in Geometry Challenge

M R
Messages
44
Reaction score
0
If ABCDEFG is a regular heptagon prove that $\frac{1}{AB}=\frac{1}{AC}+\frac{1}{AD}$.
 
Mathematics news on Phys.org
A regular polygon is cyclic. So a quadrilateral defined by any four points of the heptagon is also cyclic. Ptolemy's theorem states that the sum of the products
of two pairs of opposite equals the product of the diagonal for a cyclic quadrilateral.

Let $AB = CD = DE = x$ since they are sides of a regular polygon.
We know that $AC = CE = y$ and $AD = AE = z$. Now consider
the quadrilateral $ACDE$, and apply Ptolemy's theorem:

$$AC \cdot DE + CD \cdot AE = AD \cdot CE,$$ or using the notation, this becomes: $y x + x z = z y$. Or $x(y + z) = zy$. This further simplify to:
$\frac 1x = \frac{y + z}{zy} = \frac 1y + \frac 1z$. Therefore,
$\frac 1{AB} = \frac 1{AC} + \frac 1{AD}$
 
magneto said:
A regular polygon is cyclic. So a quadrilateral defined by any four points of the heptagon is also cyclic. Ptolemy's theorem states that the sum of the products
of two pairs of opposite equals the product of the diagonal for a cyclic quadrilateral.

Let $AB = CD = DE = x$ since they are sides of a regular polygon.
We know that $AC = CE = y$ and $AD = AE = z$. Now consider
the quadrilateral $ACDE$, and apply Ptolemy's theorem:

$$AC \cdot DE + CD \cdot AE = AD \cdot CE,$$ or using the notation, this becomes: $y x + x z = z y$. Or $x(y + z) = zy$. This further simplify to:
$\frac 1x = \frac{y + z}{zy} = \frac 1y + \frac 1z$. Therefore,
$\frac 1{AB} = \frac 1{AC} + \frac 1{AD}$

Neatly done. :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top