Prove $\frac{1}{AB}=\frac{1}{AC}+\frac{1}{AD}$ in Geometry Challenge

  • Context: MHB 
  • Thread starter Thread starter M R
  • Start date Start date
  • Tags Tags
    Challenge Geometry
M R
Messages
44
Reaction score
0
If ABCDEFG is a regular heptagon prove that $\frac{1}{AB}=\frac{1}{AC}+\frac{1}{AD}$.
 
Mathematics news on Phys.org
A regular polygon is cyclic. So a quadrilateral defined by any four points of the heptagon is also cyclic. Ptolemy's theorem states that the sum of the products
of two pairs of opposite equals the product of the diagonal for a cyclic quadrilateral.

Let $AB = CD = DE = x$ since they are sides of a regular polygon.
We know that $AC = CE = y$ and $AD = AE = z$. Now consider
the quadrilateral $ACDE$, and apply Ptolemy's theorem:

$$AC \cdot DE + CD \cdot AE = AD \cdot CE,$$ or using the notation, this becomes: $y x + x z = z y$. Or $x(y + z) = zy$. This further simplify to:
$\frac 1x = \frac{y + z}{zy} = \frac 1y + \frac 1z$. Therefore,
$\frac 1{AB} = \frac 1{AC} + \frac 1{AD}$
 
magneto said:
A regular polygon is cyclic. So a quadrilateral defined by any four points of the heptagon is also cyclic. Ptolemy's theorem states that the sum of the products
of two pairs of opposite equals the product of the diagonal for a cyclic quadrilateral.

Let $AB = CD = DE = x$ since they are sides of a regular polygon.
We know that $AC = CE = y$ and $AD = AE = z$. Now consider
the quadrilateral $ACDE$, and apply Ptolemy's theorem:

$$AC \cdot DE + CD \cdot AE = AD \cdot CE,$$ or using the notation, this becomes: $y x + x z = z y$. Or $x(y + z) = zy$. This further simplify to:
$\frac 1x = \frac{y + z}{zy} = \frac 1y + \frac 1z$. Therefore,
$\frac 1{AB} = \frac 1{AC} + \frac 1{AD}$

Neatly done. :)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
1
Views
910
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K