MHB Prove Identity: (1+sin(x))/(1-sin(x))=2tan^2(x)+1+2tan(x)sec(x)

  • Thread starter Thread starter Sean1
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
The discussion focuses on proving the trigonometric identity (1+sin(x))/(1-sin(x))=2tan^2(x)+1+2tan(x)sec(x). A user seeks assistance in transforming the left-hand side into a non-fractional expression, suggesting the use of the conjugate to simplify the equation. They propose multiplying by (1+sin(x)) to eliminate the denominator. Another participant confirms that this approach is correct and encourages further exploration of the transformation. The conversation emphasizes collaborative problem-solving in trigonometric identities.
Sean1
Messages
5
Reaction score
0
I cannot seem to prove the following identity

(1+sin(x))/(1-sin(x))=2tan^2(x)+1+2tan(x)sec(x)

Can you assist?
 
Mathematics news on Phys.org
Hi Sean,

Let's start with the left-hand side.

$$\frac{1+\sin(x)}{1-\sin(x)}$$.

We want this to turn into an expression without a fraction, so maybe we can try getting rid of the denominator somehow. When I see something in the form of $a-b$, I often try multiplying by the conjugate $a+b$.

$$\frac{1+\sin(x)}{1-\sin(x)} \left( \frac{1+\sin(x)}{1+\sin(x)} \right) $$

What do you get after trying this?
 
Thanks for getting me started.

This is my working. Can you confirm my approach is correct?

View attachment 4467
 

Attachments

  • identity solution.PNG
    identity solution.PNG
    2.9 KB · Views: 141
Last edited:
Looks good! :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top