MHB Prove Inequality for $a,\,b,\,c$: $9abc\ge7(ab+bc+ca)-2$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be positive real numbers satisfying $a+b+c=1$.

Prove that $9abc\ge7(ab+bc+ca)-2$.
 
Mathematics news on Phys.org
My solution:

Let the objective function be:

$$f(a,b,c)=9abc-7(ab+bc+ca)+2$$

Using my old friend, cyclic symmetry, we find that the extremum occurs for:

$$a=b=c=\frac{1}{3}$$

And we then find:

$$f\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)=\frac{1}{3}-\frac{7}{3}+2=0$$

To ensure this is the minimum, we may look at:

$$f\left(1,0,0\right)=0-0+2=2$$

Thus, we have proved:

$$9abc\ge7(ab+bc+ca)-2$$

where:

$$a+b+c=1$$
 
MarkFL said:
My solution:

Let the objective function be:

$$f(a,b,c)=9abc-7(ab+bc+ca)+2$$

Using my old friend, cyclic symmetry, we find that the extremum occurs for:

$$a=b=c=\frac{1}{3}$$

And we then find:

$$f\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)=\frac{1}{3}-\frac{7}{3}+2=0$$

To ensure this is the minimum, we may look at:

$$f\left(1,0,0\right)=0-0+2=2$$

Thus, we have proved:

$$9abc\ge7(ab+bc+ca)-2$$

where:

$$a+b+c=1$$

Well done MarkFL! And I knew you would tackle it with the help of your old friend! Hehehe...I can read your mind!

I'd buy Mountain Dew for you((Tongueout)) if you try the problem using the Schur's inequality that says, for all non-negative real $x,\,y$ and $z$, and a positive number $t$, we have:

$x^t(x-y)(x-z)+y^t(y-z)(y-x)+z^t(z-x)(z-y)\ge 0$

Hint:

Try $t=1$.
 
I didn't realize until just now that I haven't posted my solution to this old challenge...sorry about that!:o

Schur's inequality says, for all positive real $a,\,b$ and $c$, we have:

$9abc\ge 4(ab+bc+ca)(a+b+c)-(a+b+c)^3$(*)

In our case, we're given $a+b+c=1$, so substituting that into (*) yields

$9abc\ge 4(ab+bc+ca)-1$(**)

If we can prove $4(ab+bc+ca)-1\ge 7(ab+bc+ca)-2$, then we're done.

From the Cauchy-Schwarz inequality, we have:

$a^2+b^2+c^2\ge ab+bc+ca\implies (a+b+c)^2\ge 3(ab+bc+ca)$

Therefore, with $a+b+c=1$, the above inequality becomes

$1\ge 3(ab+bc+ca)$

Add the quantity $4(ab+bc+ca)-2$ to both sides we obtain:

$4(ab+bc+ca)-2+1\ge 4(ab+bc+ca)-2+3(ab+bc+ca)$

$4(ab+bc+ca)-1\ge 7(ab+bc+ca)-2$ (Q.E.D.).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Back
Top