Prove Inequality: IMO $\frac{1}{x^4}+\cdots \geq \frac{128}{3(x+y)^4}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary

Discussion Overview

The thread discusses the inequality $\dfrac{1}{x^4}+\dfrac{1}{4x^3y} + \dfrac{1}{6x^2y^2}+ \dfrac{1}{4xy^3}+ \dfrac{1}{y^4} ≥ \dfrac{128}{3(x+y)^4}$, where $x$ and $y$ are positive real numbers. Participants explore the validity of the inequality and address typographical errors in the formulation.

Discussion Character

  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Post 1 presents the inequality for proof, specifying the conditions on $x$ and $y$.
  • Post 2 suggests a variation of the inequality with a different term, prompting clarification on the intended expression.
  • Post 3 seeks confirmation on the correct formulation of the inequality, acknowledging a typographical error in the original post.
  • Post 4 reflects on the nature of posting challenges and the potential for errors, while praising the efforts of the original poster.
  • Posts 5 and 6 indicate that participants have attempted to provide solutions, although the content of these solutions is not detailed.

Areas of Agreement / Disagreement

Participants express uncertainty regarding the correct formulation of the inequality, with multiple versions being proposed. There is no consensus on the final form or proof of the inequality.

Contextual Notes

There are unresolved typographical issues in the inequality formulations, and the discussion reflects varying interpretations of the terms involved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\dfrac{1}{x^4}+\dfrac{1}{4x^3y} + \dfrac{1}{6x^2y^2}+ \dfrac{1}{4xy^3}+ \dfrac{1}{y^4} ≥ \dfrac{128}{3(x+y)^4}$, given $x,\,y$ are positive real numbers.
 
Last edited:
Mathematics news on Phys.org
anemone said:
Prove $\dfrac{1}{x^4}+\dfrac{1}{4x^3y} + \dfrac{1}{6x^2y^2}+ \dfrac{1}{4xy^4}+ \dfrac{1}{y^4} ≥ \dfrac{128}{3(x+y)^4}$, given $x,\,y$ are positive real numbers.

Do you mean $\dfrac{1}{x^4}+\dfrac{1}{4x^3y} + \dfrac{1}{6x^2y^2}+ \dfrac{1}{4xy^3}+ \dfrac{1}{y^4} ≥ \dfrac{128}{3(x+y)^4}$, given $x,\,y$ ?
 
RLBrown said:
Do you mean $\dfrac{1}{x^4}+\dfrac{1}{4x^3y} + \dfrac{1}{6x^2y^2}+ \dfrac{1}{4xy^3}+ \dfrac{1}{y^4} ≥ \dfrac{128}{3(x+y)^4}$, given $x,\,y$ ?

Ah, I'm sorry for posting another challenge with a typo---again...sorry RLBrown, your intuition is right, and I will correct my first post to change the exponent of $y$ to 3 in the fourth term on the LHS of the inequality, thanks for letting me know about it.
 
anemone said:
Ah, I'm sorry for posting another challenge with a typo---again...sorry...

You know, only those who post challenges are at risk of posting challenges with typos. The only way one can prevent oneself from making mistakes is to not do anything. Given the hundreds of such problems you have tirelessly and diligently posted for our enjoyment here at MHB and the very small number with typos, I would say your track record is excellent. (Yes)
 
my solution
by recombinaion and using $AP \geq GP$ we have :
left side :
$(\dfrac{1}{x^4}+\dfrac{1}{y^4})+(\dfrac{1}{4x^3y}+\dfrac{1}{4xy^3})+\dfrac{1}{6x^2y^2}\
\geq \dfrac {2}{x^2y^2}+\dfrac {1}{2x^2y^2}+\dfrac {1}{6x^2y^2}=\dfrac{8}{3x^2y^2}$
right side :
$\dfrac{128}{3(x+y)^4}\leq \dfrac {128}{48x^2y^2}=\dfrac{8}{3x^2y^2}$
and the proof is done
 
Albert said:
my solution
by recombinaion and using $AP \geq GP$ we have :
left side :
$(\dfrac{1}{x^4}+\dfrac{1}{y^4})+(\dfrac{1}{4x^3y}+\dfrac{1}{4xy^3})+\dfrac{1}{6x^2y^2}\
\geq \dfrac {2}{x^2y^2}+\dfrac {1}{2x^2y^2}+\dfrac {1}{6x^2y^2}=\dfrac{8}{3x^2y^2}$
right side :
$\dfrac{128}{3(x+y)^4}\leq \dfrac {128}{48x^2y^2}=\dfrac{8}{3x^2y^2}$
and the proof is done

Well done, Albert and thanks for participating!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
10
Views
2K