Prove Inequality: IMO $\frac{1}{x^4}+\cdots \geq \frac{128}{3(x+y)^4}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The inequality $\dfrac{1}{x^4}+\dfrac{1}{4x^3y} + \dfrac{1}{6x^2y^2}+ \dfrac{1}{4xy^3}+ \dfrac{1}{y^4} \geq \dfrac{128}{3(x+y)^4}$ must be proven for positive real numbers $x$ and $y$. A correction was made to the original post regarding the exponent of $y$ in the fourth term on the left-hand side. The discussion emphasizes the importance of accuracy in problem posting, with participants acknowledging the effort put into creating challenging problems.

PREREQUISITES
  • Understanding of algebraic inequalities
  • Familiarity with the AM-GM inequality
  • Knowledge of positive real number properties
  • Experience with mathematical proof techniques
NEXT STEPS
  • Study the AM-GM inequality and its applications in proving inequalities
  • Explore advanced techniques in inequality proofs, such as Cauchy-Schwarz and Jensen's inequality
  • Practice solving similar inequalities involving multiple variables
  • Review common pitfalls in mathematical problem posting and communication
USEFUL FOR

Mathematics enthusiasts, students preparing for mathematical competitions, and educators looking for examples of inequality proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\dfrac{1}{x^4}+\dfrac{1}{4x^3y} + \dfrac{1}{6x^2y^2}+ \dfrac{1}{4xy^3}+ \dfrac{1}{y^4} ≥ \dfrac{128}{3(x+y)^4}$, given $x,\,y$ are positive real numbers.
 
Last edited:
Mathematics news on Phys.org
anemone said:
Prove $\dfrac{1}{x^4}+\dfrac{1}{4x^3y} + \dfrac{1}{6x^2y^2}+ \dfrac{1}{4xy^4}+ \dfrac{1}{y^4} ≥ \dfrac{128}{3(x+y)^4}$, given $x,\,y$ are positive real numbers.

Do you mean $\dfrac{1}{x^4}+\dfrac{1}{4x^3y} + \dfrac{1}{6x^2y^2}+ \dfrac{1}{4xy^3}+ \dfrac{1}{y^4} ≥ \dfrac{128}{3(x+y)^4}$, given $x,\,y$ ?
 
RLBrown said:
Do you mean $\dfrac{1}{x^4}+\dfrac{1}{4x^3y} + \dfrac{1}{6x^2y^2}+ \dfrac{1}{4xy^3}+ \dfrac{1}{y^4} ≥ \dfrac{128}{3(x+y)^4}$, given $x,\,y$ ?

Ah, I'm sorry for posting another challenge with a typo---again...sorry RLBrown, your intuition is right, and I will correct my first post to change the exponent of $y$ to 3 in the fourth term on the LHS of the inequality, thanks for letting me know about it.
 
anemone said:
Ah, I'm sorry for posting another challenge with a typo---again...sorry...

You know, only those who post challenges are at risk of posting challenges with typos. The only way one can prevent oneself from making mistakes is to not do anything. Given the hundreds of such problems you have tirelessly and diligently posted for our enjoyment here at MHB and the very small number with typos, I would say your track record is excellent. (Yes)
 
my solution
by recombinaion and using $AP \geq GP$ we have :
left side :
$(\dfrac{1}{x^4}+\dfrac{1}{y^4})+(\dfrac{1}{4x^3y}+\dfrac{1}{4xy^3})+\dfrac{1}{6x^2y^2}\
\geq \dfrac {2}{x^2y^2}+\dfrac {1}{2x^2y^2}+\dfrac {1}{6x^2y^2}=\dfrac{8}{3x^2y^2}$
right side :
$\dfrac{128}{3(x+y)^4}\leq \dfrac {128}{48x^2y^2}=\dfrac{8}{3x^2y^2}$
and the proof is done
 
Albert said:
my solution
by recombinaion and using $AP \geq GP$ we have :
left side :
$(\dfrac{1}{x^4}+\dfrac{1}{y^4})+(\dfrac{1}{4x^3y}+\dfrac{1}{4xy^3})+\dfrac{1}{6x^2y^2}\
\geq \dfrac {2}{x^2y^2}+\dfrac {1}{2x^2y^2}+\dfrac {1}{6x^2y^2}=\dfrac{8}{3x^2y^2}$
right side :
$\dfrac{128}{3(x+y)^4}\leq \dfrac {128}{48x^2y^2}=\dfrac{8}{3x^2y^2}$
and the proof is done

Well done, Albert and thanks for participating!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
10
Views
2K