Prove Inequality: $x^2y\,+\,y^2z\,+\,z^2x \ge 2(x\,+\,y\,+\,z) - 3$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The discussion centers on proving the inequality \(x^2y + y^2z + z^2x \ge 2(x + y + z) - 3\) under the condition that \(xy + yz + zx = 3xyz\) for positive real numbers \(x\), \(y\), and \(z\). Participants confirm the validity of the proof provided by a user named Euge, highlighting the effectiveness of the approach taken. The proof utilizes algebraic manipulation and properties of inequalities to establish the result definitively.

PREREQUISITES
  • Understanding of algebraic inequalities
  • Familiarity with symmetric sums
  • Knowledge of positive real numbers and their properties
  • Experience with mathematical proofs and manipulation
NEXT STEPS
  • Study the Cauchy-Schwarz inequality and its applications
  • Explore techniques for proving inequalities in algebra
  • Learn about symmetric functions and their properties
  • Investigate other inequalities involving multiple variables
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in inequality proofs and algebraic manipulation techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $x,\,y$ and $z$ are positive real numbers such that $xy + yz + zx = 3xyz.$

Prove that $x^2y + y^2z + z^2x\ge 2(x + y + z) − 3$.
 
Mathematics news on Phys.org
My solution:

Dividing the equation $xy + yz + zx = 3xyz$ by $xyz$ yields $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 3$. So

$$x^2y + y^2z + z^2x + 3 = \left(x^2y + \frac{1}{y}\right) + \left(y^2z + \frac{1}{z}\right) + \left(z^2x + \frac{1}{x}\right)$$
$$ \ge 2\sqrt{x^2y/y} + 2\sqrt{y^2z/z} + 2\sqrt{z^2x/x} = 2x + 2y + 2z = 2(x + y + z).$$

Therefore

$$x^2y + y^2z + z^2x \ge 2(x + y + z) - 3.$$
 
Euge said:
My solution:

Dividing the equation $xy + yz + zx = 3xyz$ by $xyz$ yields $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 3$. So

$$x^2y + y^2z + z^2x + 3 = \left(x^2y + \frac{1}{y}\right) + \left(y^2z + \frac{1}{z}\right) + \left(z^2x + \frac{1}{x}\right)$$
$$ \ge 2\sqrt{x^2y/y} + 2\sqrt{y^2z/z} + 2\sqrt{z^2x/x} = 2x + 2y + 2z = 2(x + y + z).$$

Therefore

$$x^2y + y^2z + z^2x \ge 2(x + y + z) - 3.$$

Very well done, Euge! (Cool)

My solution:

$$\begin{align*}x^2y + y^2z + z^2x&=\frac{x^2}{\frac{1}{y}}+\frac{y^2}{\frac{1}{z}}+\frac{z^2}{\frac{1}{x}}\\&\ge \frac{(x+y+z)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\text{by the Titu's Lemma}\\&=\frac{(x+y+z)^2}{3}\text{since we're told $xy + yz + zx = 3xyz.$}\end{align*}$$

Now if we can prove $$\frac{(x+y+z)^2}{3}\ge 2(x + y + z) − 3$$ then we're done.

But that is true since

$$\frac{(x+y+z)^2}{3}\ge 2(x + y + z) − 3$$

$$(x+y+z)^2- 6(x + y + z)+ 9\ge 0$$

$$(x+y+z-3)^2\ge 0$$ for all positive real $x,\,y$ and $z$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K