MHB Prove Inequality: $x^2y\,+\,y^2z\,+\,z^2x \ge 2(x\,+\,y\,+\,z) - 3$

Click For Summary
The inequality $x^2y + y^2z + z^2x \ge 2(x + y + z) - 3$ is to be proven under the condition that $x, y, z$ are positive real numbers satisfying $xy + yz + zx = 3xyz$. The discussion includes various approaches to proving the inequality, with participants sharing their solutions and methods. The consensus highlights the importance of manipulating the given condition to derive the desired result. The conversation emphasizes the application of algebraic techniques and inequalities in the proof process. Overall, the thread showcases collaborative problem-solving in mathematical inequality proofs.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $x,\,y$ and $z$ are positive real numbers such that $xy + yz + zx = 3xyz.$

Prove that $x^2y + y^2z + z^2x\ge 2(x + y + z) − 3$.
 
Mathematics news on Phys.org
My solution:

Dividing the equation $xy + yz + zx = 3xyz$ by $xyz$ yields $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 3$. So

$$x^2y + y^2z + z^2x + 3 = \left(x^2y + \frac{1}{y}\right) + \left(y^2z + \frac{1}{z}\right) + \left(z^2x + \frac{1}{x}\right)$$
$$ \ge 2\sqrt{x^2y/y} + 2\sqrt{y^2z/z} + 2\sqrt{z^2x/x} = 2x + 2y + 2z = 2(x + y + z).$$

Therefore

$$x^2y + y^2z + z^2x \ge 2(x + y + z) - 3.$$
 
Euge said:
My solution:

Dividing the equation $xy + yz + zx = 3xyz$ by $xyz$ yields $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 3$. So

$$x^2y + y^2z + z^2x + 3 = \left(x^2y + \frac{1}{y}\right) + \left(y^2z + \frac{1}{z}\right) + \left(z^2x + \frac{1}{x}\right)$$
$$ \ge 2\sqrt{x^2y/y} + 2\sqrt{y^2z/z} + 2\sqrt{z^2x/x} = 2x + 2y + 2z = 2(x + y + z).$$

Therefore

$$x^2y + y^2z + z^2x \ge 2(x + y + z) - 3.$$

Very well done, Euge! (Cool)

My solution:

$$\begin{align*}x^2y + y^2z + z^2x&=\frac{x^2}{\frac{1}{y}}+\frac{y^2}{\frac{1}{z}}+\frac{z^2}{\frac{1}{x}}\\&\ge \frac{(x+y+z)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\text{by the Titu's Lemma}\\&=\frac{(x+y+z)^2}{3}\text{since we're told $xy + yz + zx = 3xyz.$}\end{align*}$$

Now if we can prove $$\frac{(x+y+z)^2}{3}\ge 2(x + y + z) − 3$$ then we're done.

But that is true since

$$\frac{(x+y+z)^2}{3}\ge 2(x + y + z) − 3$$

$$(x+y+z)^2- 6(x + y + z)+ 9\ge 0$$

$$(x+y+z-3)^2\ge 0$$ for all positive real $x,\,y$ and $z$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...