MHB Prove $R$ is a Field: Finitely Generated Modules are Free

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Field
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be a commutative ring with unit.

I want to show that if $R\neq 0$ such that each finitely generated $R$-module is free then $R$ is field. Could you give me some hints how we could show that? (Wondering)
 
Physics news on Phys.org
Suppose that if $I$ is an ideal of the commutative ring $R$ and it is a free $R$-module, then it has a basis, i.e., a generating set consisting of linearly independent elements.

Does a finitely generated $R$-module is free when the basis is finite? (Wondering)
 
mathmari said:
Hey! :o

Let $R$ be a commutative ring with unit.

I want to show that if $R\neq 0$ such that each finitely generated $R$-module is free then $R$ is field. Could you give me some hints how we could show that? (Wondering)

It suffices to show that $R$ is a simple $R$-module. Let $J$ be a proper ideal of $R$. Then $R/J$ is a finitely generated $R$-module, hence free by hypothesis. Free modules have trivial annihilators, so $\operatorname{Ann}_R(R/J) = 0$. On the other hand, $\operatorname{Ann}_R(R/J) = J$. Hence, $J = 0$.
mathmari said:
Suppose that if $I$ is an ideal of the commutative ring $R$ and it is a free $R$-module, then it has a basis, i.e., a generating set consisting of linearly independent elements.

Does a finitely generated $R$-module is free when the basis is finite? (Wondering)

That does not make sense. A finitely generated $R$-module need not have a basis, but the ones that do are free by definition.
 
Euge said:
It suffices to show that $R$ is a simple $R$-module.

Why does this suffice? (Wondering)
Euge said:
Let $J$ be a proper ideal of $R$. Then $R/J$ is a finitely generated $R$-module, hence free by hypothesis.

Why does it follow that $R/J$ is a finitely generated $R$-module? (Wondering)
 
It suffices to show that $R$ is simple, since then $aR = R$ for every nonzero $a\in R$, and consequently, all nonzero elements are invertible.

Since $R/J$ is a quotient of a finitely generated $R$-module (namely, $R$ itself), then $R/J$ is finitely generated as an $R$-module.
 
Hi mathmari,

I don't think this is debatable, but is $0$ considered not to be a finitely generated $R$-module in your class? If that's not the case, then there is an issue with the problem statement

mathmari said:
Let $R$ be a commutative ring with unit.

I want to show that if $R\neq 0$ such that each finitely generated $R$-module is free then $R$ is field.

If we say an $R$-module $M$ is finitely generated if there is a surjection $R^n \to M$ for some positive integer $n$, then $0$ is finitely generated. In the hypothesis of your problem, $0$ would also be a free $R$-module, which would imply $0 \cong R^n$ for some positive integer $n$; this forces $R = 0$, contrary to assumption. The statement would be correct if "each finitely generated $R$-module is free" is replaced with "each finitely generated nontrivial $R$-module is free".
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top