Prove that (1+a/sinx)(1+b/cosx) is greater than or equal to (1+2sqrt(ab))^2

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the inequality $(1+\frac{a}{\sin x})(1+\frac{b}{\cos x}) \geq (1+2\sqrt{ab})^2$ for all real numbers \( a, b \geq 0 \) and \( 0 < x < \frac{\pi}{2} \). The Cauchy-Schwarz inequality is employed, leading to the conclusion that the correct form of the inequality should be $(1+\frac{a}{\sin x})(1+\frac{b}{\cos x}) \geq (1+\sqrt{2ab})^2$. The discussion highlights the importance of correctly applying mathematical principles and clarifying the conditions under which the inequalities hold.

PREREQUISITES
  • Cauchy-Schwarz inequality in mathematics
  • Basic trigonometric identities, specifically \( \sin x \) and \( \cos x \)
  • Understanding of inequalities and their proofs
  • Knowledge of real number properties and their implications
NEXT STEPS
  • Study the Cauchy-Schwarz inequality and its applications in proofs
  • Learn about trigonometric identities, particularly \( \sin(2x) \) and its relationship with \( \sin x \) and \( \cos x \)
  • Explore advanced inequality proofs in real analysis
  • Investigate common pitfalls in mathematical proofs and how to avoid them
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in mastering inequality proofs and trigonometric identities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For all real numbers a, b, x with $ a, b \geq 0 $ and $ 0 < x < \frac{\pi}{2}$, prove that $(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+2 \sqrt {ab})^2$.

By using the Cauchy-Schwarz inequality, we can say that
$(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\frac{ab}{sinxcosx})^2$ ------(*)

But we know that $ sinxcosx=\frac{sin2x}{2} $
and we're given $ 0 < x < \frac{\pi}{2}$, therefore, $ 0 <sin2x < 1$ and this means $ 0 < \frac{sin2x}{2} < \frac{1}{2}$

From the equation (*), in order to prove $(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\frac{ab}{sinxcosx})^2$, we need to have a maximum of $ sinxcosx $, and this happens when $ sinxcosx=\frac{1}{2} $.

Now, the inequalities becomes $(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\frac{ab}{\frac{1}{2}})^2$

$(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+2ab)^2$------(**)

Since $ a, b \geq 0 $,
$ a \geq \sqrt a $
$ b \geq \sqrt b $
$ ab \geq \sqrt {ab} $
$ 2ab \geq 2\sqrt {ab} $
$ 1+2ab \geq 1+2\sqrt {ab} $
$ (1+2ab)^2 \geq (1+2\sqrt {ab})^2 $------(***)

From equations (**) and (***), it's obvious that $(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+2 \sqrt {ab})^2$.
Am I doing this correct?

Thanks, as usual. :)
 
Mathematics news on Phys.org
anemone said:
For all real numbers a, b, x with $ a, b \geq 0 $ and $ 0 < x < \frac{\pi}{2}$, prove that $(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+2 \sqrt {ab})^2$.

By using the Cauchy-Schwarz inequality, we can say that
$(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\frac{ab}{sinxcosx})^2$ ------(*)

But we know that $ sinxcosx=\frac{sin2x}{2} $
and we're given $ 0 < x < \frac{\pi}{2}$, therefore, $ 0 <sin2x < 1$ and this means $ 0 < \frac{sin2x}{2} < \frac{1}{2}$

From the equation (*), in order to prove $(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\frac{ab}{sinxcosx})^2$, we need to have a maximum of $ sinxcosx $, and this happens when $ sinxcosx=\frac{1}{2} $.

Now, the inequalities becomes $(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\frac{ab}{\frac{1}{2}})^2$

$(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+2ab)^2$------(**)

Since $ a, b \geq 0 $,
$ a \geq \sqrt a $
$ b \geq \sqrt b $
$ ab \geq \sqrt {ab} $
$ 2ab \geq 2\sqrt {ab} $
$ 1+2ab \geq 1+2\sqrt {ab} $
$ (1+2ab)^2 \geq (1+2\sqrt {ab})^2 $------(***)

From equations (**) and (***), it's obvious that $(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+2 \sqrt {ab})^2$.
Am I doing this correct?
The idea of using Cauchy–Schwarz is exactly what is needed here. But you have made mistakes in both the statement and the solution of the problem.

For a start, the problem should say "prove that $\bigl(1+\frac{a}{\sin x}\bigr)\bigl(1+\frac{b}{\cos x}\bigr) \geq (1+ \sqrt {2ab})^2$." As stated, with the 2 outside the square root sign, the result is false (as you can see by putting $a=b=1$ and $x=\pi/4$).

To use Cauchy–Schwarz, you need to apply it to the vectors $\Bigl(1,\sqrt{\frac a{\sin x}}\,\Bigr)$ and $\Bigl(1,\sqrt{\frac b{\cos x}}\,\Bigr).$ The inequality then says $$\Bigl(1+ \tfrac{\sqrt{ab}}{\sqrt{\sin x\cos x}}\Bigr)^2\leqslant \Bigl(1+\frac{a}{\sin x}\Bigr)\Bigl(1+\frac{b}{\cos x}\Bigr).$$

Now you can use the fact that $\sin x\cos x = \frac12\sin(2x)$, as in your argument above, to get the result. That way, you avoid having to assume that $ a \geqslant \sqrt a $ and $ b \geqslant \sqrt b $, which is just as well because those inequalities only hold when $a\geqslant1$ and $b\geqslant1.$
 
Last edited:
Opalg said:
The idea of using Cauchy–Schwarz is exactly what is needed here. But you have made mistakes in both the statement and the solution of the problem.

For a start, the problem should say "prove that $\bigl(1+\frac{a}{\sin x}\bigr)\bigl(1+\frac{b}{\cos x}\bigr) \geq (1+ \sqrt {2ab})^2$." As stated, with the 2 outside the square root sign, the result is false (as you can see by putting $a=b=1$ and $x=\pi/4$).
OK.
I also suspected something went wrong after doing the substitution (a=2, b=3, $x=\pi/6$). But I didn't realize that the 2 should be placed inside the radical sign.

Ha, I couldn't believe I made this kind of mistake! (I've missed out the square root signs on both ab and sinxcosx!:mad:)
$(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\frac{ab}{sinxcosx})^2$

After your explanation, everything becomes so clear.:o
$(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\frac{\sqrt {ab}}{\sqrt {sinxcosx}})^2$
$(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\frac{\sqrt {2ab}}{\sqrt {sin2x}})^2$

But we have $ 0 < sin2x < 1$, to obtain $(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\frac{\sqrt {2ab}}{\sqrt {sin2x}})^2$, we need to have a maximum of $ sinxcosx $, and this happens when $ sinxcosx=1 $.

Therefore,
$(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\frac{\sqrt {2ab}}{1})^2$
$(1+\frac{a}{sinx})(1+\frac{b}{cosx}) \geq (1+\sqrt {2ab})^2$ (Q.E.D.)

Thanks, Opalg.
 
Last edited:

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
10K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K