Prove that the expression is a valid argument using the deduction method

Click For Summary

Discussion Overview

The discussion revolves around proving the validity of a logical argument using the deduction method. Participants explore the expression involving existential and universal quantifiers and implications, focusing on the application of rules of inference and equivalences in formal logic.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Post 1 presents the expression to be proven as a valid argument.
  • Post 2 requests clarification on the problem statement and definitions of "valid argument" and "deduction method," emphasizing the need for effort in solving the problem.
  • Post 3 reiterates the request for a complete problem statement and definitions, while also providing an initial proof attempt with premises and steps outlined.
  • Post 4 comments on the variability of rules of inference across textbooks and suggests listing these rules or providing a reference, while also offering an informal reasoning approach to the argument.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the definitions or the approach to the proof. There are differing views on how to proceed with the argument and the necessity of clarifying foundational concepts.

Contextual Notes

Participants express uncertainty regarding the rules of inference and how they apply to the argument. There is a lack of consensus on the definitions of key terms and the completeness of the problem statement.

stan1992
Messages
7
Reaction score
0
(∃x)[P(x) → Q(x)]∧(∀y)[Q(y) → R(y)]∧(∀x)P(x) → (∃x)R(x)
 
Physics news on Phys.org
Please write the complete problem statement in the body of the message and not in the thread title.

Also, please give the definitions of "valid argument" and "deduction method" since these concepts differ between textbooks.

Finally, http://mathhelpboards.com/rules/ ask you to show some effort. What exactly is your difficulty in solving this problem?
 
Evgeny.Makarov said:
Please write the complete problem statement in the body of the message and not in the thread title.

Also, please give the definitions of "valid argument" and "deduction method" since these concepts differ between textbooks.

Finally, http://mathhelpboards.com/rules/ ask you to show some effort. What exactly is your difficulty in solving this problem?

Prove that the expression below is a valid argument using the deduction method (that is using equivalences and rules
of inference in a proof sequence)

(∃x)[P(x) → Q(x)]∧(∀y)[Q(y) → R(y)]∧(∀x)P(x) → (∃x)R(x)

1.(∃x)[P(x) → Q(x)] prem
2.(∀y)[Q(y) → R(y)] prem
3.P(x)→Q(x) 1,ui
4.P(x) 2,ui
5.(∀x)Q(x) 5,ug
6.??
7.??
n.(∃x)R(x)

I don't know how to finish this or if I'm even on the right track
 
I have bad news for you: rules of inference differ between textbooks, too, as stated in this https://driven2services.com/staging/mh/index.php?threads/29/. (Smile) Therefore, you'll have to list the rules and equivalences or at least give the book reference.

stan1992 said:
(∃x)[P(x) → Q(x)]∧(∀y)[Q(y) → R(y)]∧(∀x)P(x) → (∃x)R(x)

1.(∃x)[P(x) → Q(x)] prem
2.(∀y)[Q(y) → R(y)] prem
It would make sense to add the third premise (∀x)P(x).

Informally, the reasoning is as follows. $P(x)$ holds for all $x$, and for at least one of them $P(x)$ implies $Q(x)$. Therefore, $Q(x)$ holds for some $x$. Further, $Q(y)$ always implies $R(y)$, including when $y$ equals the $x$ found earlier. Thus, $R(x)$ holds for that $x$.
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K