Prove that the Goldbach conjecture that every even integer....

AI Thread Summary
The discussion centers on the proof of the Goldbach conjecture, asserting that every even integer greater than 2 can be expressed as the sum of two primes. A proposed equivalence is made to the statement that every integer greater than 5 can be represented as the sum of three primes. Criticism is directed at the proof's lack of rigor, particularly the failure to demonstrate both implications of the equivalence and the absence of necessary assumptions. Participants emphasize the importance of verifying one's work and understanding the relevance of basic facts in constructing a valid proof. The thread concludes with a call for the original poster to reflect on the feedback provided.
Math100
Messages
813
Reaction score
229
Homework Statement
Prove that the Goldbach conjecture that every even integer greater than ## 2 ## is the sum of two primes is equivalent to the statement that every integer greater than ## 5 ## is the sum of three primes.
[Hint: If ## 2n-2=p_{1}+p_{2} ##, then ## 2n=p_{1}+p_{2}+2 ## and ## 2n+1=p_{1}+p_{2}+3.]
Relevant Equations
None.
Proof:

Let ## n ## be an integer.
Then ## 2n=p_{1}+p_{2} ## for ## n\geq 2 ## where ## p_{1} ## and ## p_{2} ## are primes.
Suppose ## n=k-1 ## for ## k\geq 3 ##.
Then ## 2(k-1)=p_{1}+p_{2} ##
## 2k-2=p_{1}+p_{2} ##
## 2k=p_{1}+p_{2}+2 ##.
Thus ## 2k+1=p_{1}+p_{2}+3 ##.
Therefore, the Goldbach conjecture that every even integer greater than ## 2 ## is the sum of
two primes is equivalent to the statement that every integer greater than ## 5 ## is the sum of three primes.
 
  • Sad
Likes PeroK
Physics news on Phys.org
  1. Please use more concise titles.
  2. It's an if and only if statement. How does the statement "every integer greater than ##5## is the sum of three primes" imply Goldbach according to your work?
 
Math100 said:
Homework Statement:: Prove that the Goldbach conjecture that every even integer greater than ## 2 ## is the sum of two primes is equivalent to the statement that every integer greater than ## 5 ## is the sum of three primes.
[Hint: If ## 2n-2=p_{1}+p_{2} ##, then ## 2n=p_{1}+p_{2}+2 ## and ## 2n+1=p_{1}+p_{2}+3.]
Relevant Equations:: None.

Proof:

Let ## n ## be an integer.
Then ## 2n=p_{1}+p_{2} ## for ## n\geq 2 ## where ## p_{1} ## and ## p_{2} ## are primes.
Suppose ## n=k-1 ## for ## k\geq 3 ##.
Then ## 2(k-1)=p_{1}+p_{2} ##
## 2k-2=p_{1}+p_{2} ##
## 2k=p_{1}+p_{2}+2 ##.
Thus ## 2k+1=p_{1}+p_{2}+3 ##.
Therefore, the Goldbach conjecture that every even integer greater than ## 2 ## is the sum of
two primes is equivalent to the statement that every integer greater than ## 5 ## is the sum of three primes.
Your problem is that you can prove anything. You simply put together a few lines and declare the result proved. These questions that tell you the answer are no good. You are not learning much from them.

These questions you are doing are only useful to students who can check their own work and spot their own errors - which you never do.

You need to find questions where you are asked to prove something if it is true or find a counterexample if it is false. That means you don't know in advance whether the statement you are given is true of not.

You can't possibly progress if after all the problems you've posted on here you are still submitting work like this. It's substandard, IMO. In any case, you need to learn to check your own work and find your own errors.
 
Last edited:
  • Like
Likes phinds, berkeman and nuuskur
Practice has shown that you are stacking some, perhaps somewhat related, statements in a proof attempt and then declare the statement proved. On the other hand, when pried for details, your responses are often nonsensical.
As an example, I asked you in another thread why it's important for ##a## to be nonnegative for the claim that involves ##\sqrt[n]{a}##. Your response to it is circular.

The reason is the quantity ##\sqrt[n]{a}## is not well defined for negative ##a##.

Furthermore, the claim in this problem is an equivalence, which means one needs to prove two implications. There is no mention of this anywhere in your work. Further criticisms
  1. You make no mention of assumptions.
  2. You don't quantify statements.
  3. You focus a lot on obvious details, while not recognising (or purposefully dodging?) central arguments.
You keep repeating the same errors, you don't acknowledge the criticism you are given. This is extremely discouraging. Vaas Montenegro (from Farcry 3) might have some comments about your behaviour :rolleyes:
 
  • Like
Likes PeroK
All you have done is restated the hint (if ## 2n-2=p_{1}+p_{2} ##, then ## 2n=p_{1}+p_{2}+2 ## and ## 2n+1=p_{1}+p_{2}+3##).

The key to this proof is understanding why the trivial facts in the hint are relevant.

If ## p_{1}+p_{2}+p_{3} ## is even what does this say about ## p_{1}, p_{2} \text{ and } p_{3} ##?

As others have pointed out the problem is not that you didn't work out how to do this proof, it is that you convinced yourself that what you had done constituted a proof.
 
  • Like
Likes epenguin, nuuskur and PeroK
Thread is closed for Moderation...
 
Thread will remain closed. OP -- please check all of your PMs. Thanks.
 
Back
Top