Prove that the integer ## 53^{103}+103^{53} ## is divisible by....

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
The integer 53^103 + 103^53 is proven to be divisible by 39 through modular arithmetic, where both 53 and 103 reduce to equivalent values modulo 39, leading to a conclusion of 0 modulo 39. Similarly, the integer 111^333 + 333^111 is shown to be divisible by 7, as both terms simplify to equivalent values modulo 7, resulting in a sum of 0 modulo 7. The proofs utilize properties of congruences and exponentiation. Both results confirm the divisibility claims as stated in the homework prompt. The discussion effectively demonstrates the application of modular arithmetic in proving divisibility.
Math100
Messages
813
Reaction score
229
Homework Statement
Prove that the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##, and that ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
Relevant Equations
None.
Proof:

First, we will prove that the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##.
Note that ## 53\equiv 14 \pmod {39}\implies 53^{2}\equiv 14^{2}\pmod {39}\equiv 196\pmod {39}\equiv 1\pmod {39} ##.
Now observe that ## 103\equiv 25\pmod {39}\equiv -14\pmod {39}\implies 103^{2}\equiv 196\pmod {39}\equiv 1\pmod {39} ##.
Thus ## 53^{103}+103^{53}\equiv (53^{2})^{51}\cdot 53+(103^{2})^{26}\cdot 103\equiv (1^{51}\cdot 53+1^{26}\cdot 103)\pmod {39}\equiv 156\pmod {39}\equiv 0\pmod {39} ##.
Therefore, the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##.
Next, we will prove that the integer ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
Note that ## 111\equiv 6\pmod 7\equiv (-1)\pmod 7\implies 111^{333}\equiv (-1)^{333}\pmod 7\equiv (-1)\pmod 7 ##.
Now observe that ## 333=3\cdot 111\equiv 3\cdot (-1)\pmod 7\equiv -3\pmod 7\equiv 4\pmod 7\implies 333^{3}\equiv 4^{3}\pmod 7\equiv 1\pmod 7\implies 333^{111}\equiv (333^{3})^{37}\equiv 1^{37}\pmod 7\equiv 1\pmod 7 ##.
Thus ## 111^{333}+333^{111}\equiv (-1+1)\pmod 7\equiv 0\pmod 7 ##.
Therefore, the integer ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
 
  • Like
Likes Delta2 and fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove that the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##, and that ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
Relevant Equations:: None.

Proof:

First, we will prove that the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##.
Note that ## 53\equiv 14 \pmod {39}\implies 53^{2}\equiv 14^{2}\pmod {39}\equiv 196\pmod {39}\equiv 1\pmod {39} ##.
Now observe that ## 103\equiv 25\pmod {39}\equiv -14\pmod {39}\implies 103^{2}\equiv 196\pmod {39}\equiv 1\pmod {39} ##.
Thus ## 53^{103}+103^{53}\equiv (53^{2})^{51}\cdot 53+(103^{2})^{26}\cdot 103\equiv (1^{51}\cdot 53+1^{26}\cdot 103)\pmod {39}\equiv 156\pmod {39}\equiv 0\pmod {39} ##.
Therefore, the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##.
Next, we will prove that the integer ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
Note that ## 111\equiv 6\pmod 7\equiv (-1)\pmod 7\implies 111^{333}\equiv (-1)^{333}\pmod 7\equiv (-1)\pmod 7 ##.
Now observe that ## 333=3\cdot 111\equiv 3\cdot (-1)\pmod 7\equiv -3\pmod 7\equiv 4\pmod 7\implies 333^{3}\equiv 4^{3}\pmod 7\equiv 1\pmod 7\implies 333^{111}\equiv (333^{3})^{37}\equiv 1^{37}\pmod 7\equiv 1\pmod 7 ##.
Thus ## 111^{333}+333^{111}\equiv (-1+1)\pmod 7\equiv 0\pmod 7 ##.
Therefore, the integer ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
Correct. If you want to avoid too long lines, then you can use the following structure:

\begin{align*}
53^{103}+103^{53}&\equiv (53^{2})^{51}\cdot 53+(103^{2})^{26}\cdot 103\pmod {39}\\
&\equiv (1^{51}\cdot 53+1^{26}\cdot 103)\pmod {39}\\
&\equiv 156\pmod {39}\\
&\equiv 0\pmod {39}
\end{align*}

which results in

\begin{align*}
53^{103}+103^{53}&\equiv (53^{2})^{51}\cdot 53+(103^{2})^{26}\cdot 103\pmod {39} \\
&\equiv (1^{51}\cdot 53+1^{26}\cdot 103)\pmod {39}\\
&\equiv 156\pmod {39}\\
&\equiv 0\pmod {39}
\end{align*}
 
  • Like
Likes dextercioby, Delta2 and Math100
Back
Top