Prove that the integer ## 53^{103}+103^{53} ## is divisible by....

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
SUMMARY

The integer 53103 + 10353 is proven to be divisible by 39, as demonstrated through modular arithmetic. The equivalences 53 ≡ 14 (mod 39) and 103 ≡ 25 (mod 39) lead to the conclusion that 53103 + 10353 ≡ 156 (mod 39) ≡ 0 (mod 39). Additionally, the integer 111333 + 333111 is shown to be divisible by 7, with 111 ≡ 6 (mod 7) and 333 ≡ 4 (mod 7) leading to 111333 + 333111 ≡ 0 (mod 7).

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with congruences and equivalences
  • Basic knowledge of exponentiation in number theory
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study advanced modular arithmetic techniques
  • Learn about the Chinese Remainder Theorem
  • Explore properties of prime numbers in number theory
  • Investigate applications of modular arithmetic in cryptography
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in proofs involving divisibility and modular arithmetic.

Math100
Messages
817
Reaction score
230
Homework Statement
Prove that the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##, and that ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
Relevant Equations
None.
Proof:

First, we will prove that the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##.
Note that ## 53\equiv 14 \pmod {39}\implies 53^{2}\equiv 14^{2}\pmod {39}\equiv 196\pmod {39}\equiv 1\pmod {39} ##.
Now observe that ## 103\equiv 25\pmod {39}\equiv -14\pmod {39}\implies 103^{2}\equiv 196\pmod {39}\equiv 1\pmod {39} ##.
Thus ## 53^{103}+103^{53}\equiv (53^{2})^{51}\cdot 53+(103^{2})^{26}\cdot 103\equiv (1^{51}\cdot 53+1^{26}\cdot 103)\pmod {39}\equiv 156\pmod {39}\equiv 0\pmod {39} ##.
Therefore, the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##.
Next, we will prove that the integer ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
Note that ## 111\equiv 6\pmod 7\equiv (-1)\pmod 7\implies 111^{333}\equiv (-1)^{333}\pmod 7\equiv (-1)\pmod 7 ##.
Now observe that ## 333=3\cdot 111\equiv 3\cdot (-1)\pmod 7\equiv -3\pmod 7\equiv 4\pmod 7\implies 333^{3}\equiv 4^{3}\pmod 7\equiv 1\pmod 7\implies 333^{111}\equiv (333^{3})^{37}\equiv 1^{37}\pmod 7\equiv 1\pmod 7 ##.
Thus ## 111^{333}+333^{111}\equiv (-1+1)\pmod 7\equiv 0\pmod 7 ##.
Therefore, the integer ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
 
  • Like
Likes   Reactions: Delta2 and fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove that the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##, and that ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
Relevant Equations:: None.

Proof:

First, we will prove that the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##.
Note that ## 53\equiv 14 \pmod {39}\implies 53^{2}\equiv 14^{2}\pmod {39}\equiv 196\pmod {39}\equiv 1\pmod {39} ##.
Now observe that ## 103\equiv 25\pmod {39}\equiv -14\pmod {39}\implies 103^{2}\equiv 196\pmod {39}\equiv 1\pmod {39} ##.
Thus ## 53^{103}+103^{53}\equiv (53^{2})^{51}\cdot 53+(103^{2})^{26}\cdot 103\equiv (1^{51}\cdot 53+1^{26}\cdot 103)\pmod {39}\equiv 156\pmod {39}\equiv 0\pmod {39} ##.
Therefore, the integer ## 53^{103}+103^{53} ## is divisible by ## 39 ##.
Next, we will prove that the integer ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
Note that ## 111\equiv 6\pmod 7\equiv (-1)\pmod 7\implies 111^{333}\equiv (-1)^{333}\pmod 7\equiv (-1)\pmod 7 ##.
Now observe that ## 333=3\cdot 111\equiv 3\cdot (-1)\pmod 7\equiv -3\pmod 7\equiv 4\pmod 7\implies 333^{3}\equiv 4^{3}\pmod 7\equiv 1\pmod 7\implies 333^{111}\equiv (333^{3})^{37}\equiv 1^{37}\pmod 7\equiv 1\pmod 7 ##.
Thus ## 111^{333}+333^{111}\equiv (-1+1)\pmod 7\equiv 0\pmod 7 ##.
Therefore, the integer ## 111^{333}+333^{111} ## is divisible by ## 7 ##.
Correct. If you want to avoid too long lines, then you can use the following structure:

\begin{align*}
53^{103}+103^{53}&\equiv (53^{2})^{51}\cdot 53+(103^{2})^{26}\cdot 103\pmod {39}\\
&\equiv (1^{51}\cdot 53+1^{26}\cdot 103)\pmod {39}\\
&\equiv 156\pmod {39}\\
&\equiv 0\pmod {39}
\end{align*}

which results in

\begin{align*}
53^{103}+103^{53}&\equiv (53^{2})^{51}\cdot 53+(103^{2})^{26}\cdot 103\pmod {39} \\
&\equiv (1^{51}\cdot 53+1^{26}\cdot 103)\pmod {39}\\
&\equiv 156\pmod {39}\\
&\equiv 0\pmod {39}
\end{align*}
 
  • Like
Likes   Reactions: dextercioby, Delta2 and Math100

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K