MHB Prove that the quotient space R^n / U is isomorphic to the subspace W

toni07
Messages
24
Reaction score
0
Let A be an m x n matrix with entries in R. Let T_A : R^n -> R^m be the linear map T_A(X) = A_X. Let U be the solution set of the homogeneous linear system A_X = O. Let W be the set of all vectors Y such that Y = A_X for some X in R^n. I don't really know what I'm supposed to do here, any help would be greatly appreciated.
 
Physics news on Phys.org
crypt50 said:
Let A be an m x n matrix with entries in R. Let T_A : R^n -> R^m be the linear map T_A(X) = A_X. Let U be the solution set of the homogeneous linear system A_X = O. Let W be the set of all vectors Y such that Y = A_X for some X in R^n. I don't really know what I'm supposed to do here, any help would be greatly appreciated.

Hi crypt50! :)

Let's get our definitions straight:
\begin{aligned}
U &= \text{Ker } A \\
W &= \text{Im } A
\end{aligned}

According to the isomorphism theorem (see e.g. wiki), $\text{Im }A$ is isomorphic with the quotient space $\mathbb R^n / \text{Ker }A$.$\qquad \blacksquare$
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Replies
3
Views
557
Replies
10
Views
2K
Replies
9
Views
1K
Replies
8
Views
2K
Replies
4
Views
1K
Replies
9
Views
2K
Back
Top