I Prove that the tail of this distribution goes to zero

Click For Summary
The discussion centers on proving that the tail of a distribution approaches zero, specifically that the limit of the probability of a random variable exceeding a threshold goes to zero as the threshold approaches infinity. The proof utilizes a monotonically increasing sequence to demonstrate that both the upper and lower tails of the distribution converge to zero, leveraging the continuity of probability. Questions arise regarding the necessity of using a monotonically increasing sequence and the transition from the intersection of events to the limit of their probabilities. Clarifications indicate that even non-monotonically increasing sequences can be handled by considering the maximum of the sequence, which still leads to the desired conclusion. The law of continuity of probability is highlighted as a key principle supporting the proof.
CGandC
Messages
326
Reaction score
34
Theorem: Let ## X ## be a random variable. Then ## \lim_{s \to \infty} P( |X| \geq s ) =0 ##

Proof from teacher assistant's notes: We'll show first that ## \lim_{s \to \infty} P( X \geq s ) =0 ## and ## \lim_{s \to \infty} P( X \leq -s ) =0 ##:

Let ## (s_n)_{n=1}^\infty ## be a monotonically increasing sequence with ## \lim_{ n \to \infty } s_n = \infty ##. The sequences ## \{ X \geq s_n \}_{n=1}^\infty ## and ## \{ X \leq -s_n \}_{n=1}^\infty ## are decreasing sequences with zero intersection:

##\bigcap_{n=1}^{\infty}\left\{X \leq-s_n\right\} = \bigcap_{n=1}^{\infty}\left\{X \geq s_n\right\} = \emptyset ##,
hence from continuity of probability:

##
\begin{aligned}
&0=\mathbb{P}(\emptyset)=\mathbb{P}\left(\bigcap_{n=1}^{\infty}\left\{X \geq s_n\right\}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(X \geq s_n\right) \\
&0=\mathbb{P}(\emptyset)=\mathbb{P}\left(\bigcap_{n=1}^{\infty}\left\{X \leq-s_n\right\}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(X \leq-s_n\right)
\end{aligned}
##

Hence we'll deduce:

##
\lim _{s \rightarrow \infty} \mathbb{P}(|X| \geq s)=\lim _{s \rightarrow \infty}(\mathbb{P}(X \geq s)+\mathbb{P}(X \leq-s))=0
##
and we're finished.Questions:
1. I understand that the proof above is according to Heine's definition of limit, but if so I don't understand why we took ## (s_n)_{n=1}^\infty ## to be a monotonically increasing sequence and not an arbitrary sequence? ( we'd also like to prove for sequences that do go to infinity but are not necessarily monotonically increasing ).
2. Why does the equation ## \mathbb{P}\left(\bigcap_{n=1}^{\infty}\left\{X \geq s_n\right\}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(X \geq s_n\right) ## hold? how did we go from the left side to the right side?Thanks in advance for any help!
 
Physics news on Phys.org
CGandC said:
Questions:
1. I understand that the proof above is according to Heine's definition of limit, but if so I don't understand why we took ## (s_n)_{n=1}^\infty ## to be a monotonically increasing sequence and not an arbitrary sequence? ( we'd also like to prove for sequences that do go to infinity but are not necessarily monotonicallyincreasing ).

2. Why does the equation ## \mathbb{P}\left(\bigcap_{n=1}^{\infty}\left\{X \geq s_n\right\}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(X \geq s_n\right) ## hold? how did we go from the left side to the right side?

What happens if s_n is not necessarily strictly increasing? Since the minimum of an intersection is the maximum of the minima, we have <br /> \bigcap_{n=1}^N \{X \geq s_n\} = \{X \geq \max_{1 \leq n \leq N} s_n\}. Define <br /> M_N = \max_{1 \leq n \leq N} s_n. Then M_n is an increasing sequence with M_n \to \infty. Then <br /> \begin{split}<br /> \mathbb{P}\left( \bigcap_{n=1}^\infty \{X &gt; s_n\}\right) &amp;= \lim_{N \to \infty} \mathbb{P}\left(\bigcap_{n=1}^N \{X \geq s_n\}\right) \\<br /> &amp;= \lim_{N \to \infty} \mathbb{P}(\{X \geq M_N\}).\end{split}
 
Thanks alot! everything's crystal clear now!

I also found an answer to my second question which stems from the law of continuity of probability which says the following ( in case anyone's interested ):
Let there be a monotonically decreasing sequence of events ## A_1 \supseteq A_2 \supseteq ... ## in probability space ## ( \Omega , \mathbb{P} ) ##. Then: ## \mathbb{P}\left( \bigcap_{n=1}^\infty A_n \right) = \lim_{n \to \infty } \mathbb{P}( A_n) ##
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...