Prove that this function is holomorphic

Click For Summary
SUMMARY

The function \( f(z) = \frac{1}{\sqrt{2}}(\sqrt{\sqrt{x^{2}+y^{2}}+x}+i \cdot \text{sgn}(y)\sqrt{\sqrt{x^{2}+y^{2}}-x}) \) is holomorphic on the domain \( \Omega = \{ z: z \neq 0, |\arg{z}| < \pi \} \). The Cauchy-Riemann equations must be satisfied for \( f(z) \) to be holomorphic, specifically \( \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \) and \( \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \). The discussion highlights that the function's differentiability issues arise at points where \( y = 0 \), but these can be resolved by recognizing that \( f(z)^2 = z \) and that \( \sqrt{z} \) is well-defined in the specified domain.

PREREQUISITES
  • Understanding of complex functions and holomorphicity
  • Familiarity with the Cauchy-Riemann equations
  • Knowledge of the principal branch of complex square roots
  • Basic concepts of complex analysis, particularly regarding differentiability
NEXT STEPS
  • Study the Cauchy-Riemann equations in detail
  • Learn about the principal branch of complex functions, specifically \( \sqrt{z} \)
  • Explore the implications of holomorphic functions in complex analysis
  • Investigate differentiability at boundary points in complex domains
USEFUL FOR

Students of complex analysis, mathematicians working with holomorphic functions, and anyone interested in the properties of complex functions and their differentiability.

GwtBc
Messages
74
Reaction score
6

Homework Statement


Prove that the function ## f(z)= 1/\sqrt{2}(\sqrt{\sqrt{x^{2}+y^{2}}+x}+i*sgn(y)\sqrt{\sqrt{x^{2}+y^{2}}-x})## is holomorphic on the domain ## \Omega = \left \{ z: z \neq 0, \left | \arg{z} \right | <\pi\right \} ## and further that in this domain ##f(z)^{2} = z. ##

Homework Equations


if
## f(z) = u(x,y) + iv(x,y) ##
Then we have the Cauchy-Riemann relations for a holomorphic function
## \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y},\hspace{0.3cm} \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}##

The Attempt at a Solution



Essentially I've been trying to show that the function conforms with the Cauchy Riemann equations, but there are two issues. Firstly, the imaginary component seems not to be differentiable where y = 0. I tried invoking first principles but the limit doesn't exist. Second is that it's not immediately obvious that the Cauchy relations hold even where im{f} is differentiable. I could see this latter issue being resolved by some algebraic trick, but I'm kind of clueless about the first.

Thanks in advance everyone.
 
Physics news on Phys.org
GwtBc said:

Homework Statement


Prove that the function ## f(z)= 1/\sqrt{2}(\sqrt{\sqrt{x^{2}+y^{2}}+x}+i*sgn(y)\sqrt{\sqrt{x^{2}+y^{2}}-x})## is holomorphic on the domain ## \Omega = \left \{ z: z \neq 0, \left | \arg{z} \right | <\pi\right \} ## and further that in this domain ##f(z)^{2} = z. ##

Homework Equations


if
## f(z) = u(x,y) + iv(x,y) ##
Then we have the Cauchy-Riemann relations for a holomorphic function
## \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y},\hspace{0.3cm} \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}##

The Attempt at a Solution



Essentially I've been trying to show that the function conforms with the Cauchy Riemann equations, but there are two issues. Firstly, the imaginary component seems not to be differentiable where y = 0. I tried invoking first principles but the limit doesn't exist. Second is that it's not immediately obvious that the Cauchy relations hold even where im{f} is differentiable. I could see this latter issue being resolved by some algebraic trick, but I'm kind of clueless about the first.

Thanks in advance everyone.

Have you forgotten the restrictions placed on ##z##?
 
Ray Vickson said:
Have you forgotten the restrictions placed on ##z##?
I don't think so. So ##z## can be any number in the complex plane but the negative reals or zero. This still means the function has to be differentiable at any point ##(a,0)## where ##a \in \mathbb{R}## and ##a>0##
 
GwtBc said:
I don't think so. So ##z## can be any number in the complex plane but the negative reals or zero. This still means the function has to be differentiable at any point ##(a,0)## where ##a \in \mathbb{R}## and ##a>0##

If ##z = r e^{i \theta},## then ##|arg(z)| < \pi## means ## 0 \leq \theta < \pi##. Together with ##z \neq 0##, this ensures that you will never have ##y = 0## when ##x \leq 0##. Certainly we have ##y > 0## in the interior of the region ##\Omega##. Is that enough? How do your course notes and/or textbook deal with the concept of differentiability at a boundary point of a region? (Back in the Stone Age when I took complex variables we did not let "holomorhpic" look at boundary points.)

Note added in edit: If you are using the convention that ##\theta \in (-\pi,pi]##, then, of course, the condition ##|\theta| < \pi## just eliminates the negative real axis, nothing more. However, if you use the convention that ##\theta \in [0,2 \pi)## then ##|\theta| < \pi## is the upper half-plane with the negative real axis removed.

Check your textbook or course notes to see which convention is assumed for ##\theta = \text{Arg}(z).##
 
Last edited:
  • Like
Likes   Reactions: GwtBc
Ray Vickson said:
Check your textbook or course notes to see which convention is assumed for ##\theta = \text{Arg}(z).##

Since they specified ##|arg(z)|## I'm pretty sure they intend to cover negative values of ##arg(z)##. Also ##sgn(y) |y|## might not look differentiable, but it is. An easy way to show it's holomorphic is to show that if ##z = r e^{i \theta}## what you have there is a formula for ##\sqrt{r} e^{i \frac{\theta}{2}}##.
 
  • Like
Likes   Reactions: GwtBc
Dick said:
Since they specified ##|arg(z)|## I'm pretty sure they intend to cover negative values of ##arg(z)##. Also ##sgn(y) |y|## might not look differentiable, but it is. An easy way to show it's holomorphic is to show that if ##z = r e^{i \theta}## what you have there is a formula for ##\sqrt{r} e^{i \frac{\theta}{2}}##.

I guess you are right on that score. Anyway, ##\text{sgn}(y) |y| = y,## so of course it is smooth.
 
Ray Vickson said:
If ##z = r e^{i \theta},## then ##|arg(z)| < \pi## means ## 0 \leq \theta < \pi##. Together with ##z \neq 0##, this ensures that you will never have ##y = 0## when ##x \leq 0##. Certainly we have ##y > 0## in the interior of the region ##\Omega##. Is that enough? How do your course notes and/or textbook deal with the concept of differentiability at a boundary point of a region? (Back in the Stone Age when I took complex variables we did not let "holomorhpic" look at boundary points.)

Note added in edit: If you are using the convention that ##\theta \in (-\pi,pi]##, then, of course, the condition ##|\theta| < \pi## just eliminates the negative real axis, nothing more. However, if you use the convention that ##\theta \in [0,2 \pi)## then ##|\theta| < \pi## is the upper half-plane with the negative real axis removed.

Check your textbook or course notes to see which convention is assumed for ##\theta = \text{Arg}(z).##

If ##f(z)## is defined in a nbd of ##z_{0}## we say that ##f(z)## is differentiable at ##z_{0}## if we have that ##f(z) = f(z_{0})+L(z-z_{0})+\eta## where the complex number ##L## is independent of ##z## and ##\frac{\eta}{\left |z-z_{0} \right |} \rightarrow 0## as ##z \rightarrow z_{0}##. I take this to mean that a function cannot ever be differentiable at a boundary point i.e. it cannot be differentiable on a close set, but that's ok cause this one is open.

edit: Still not sure why I can't differentiate at ##(a,0)##. Mathematica also outputs indeterminate for the limit defining the derivate at such points. My expression for it was ##\lim_{h \to 0}\frac{\sqrt{\sqrt{x^{2}+h^{2}}-x}}{h}##

edit #2: I was wrong. The equality where ## y \neq 0## is pretty much immediately obvious
 
Last edited:
Dick said:
Since they specified ##|arg(z)|## I'm pretty sure they intend to cover negative values of ##arg(z)##. Also ##sgn(y) |y|## might not look differentiable, but it is. An easy way to show it's holomorphic is to show that if ##z = r e^{i \theta}## what you have there is a formula for ##\sqrt{r} e^{i \frac{\theta}{2}}##.
I did show this and it pretty much solves the second half of the question, but I don't see how it helps with the first.
 
GwtBc said:
I did show this and it pretty much solves the second half of the question, but I don't see how it helps with the first.

If you write ##\sqrt{r} e^{i \frac{\theta}{2}}## as ##z^\frac{1}{2}## it's pretty clearly holomorphic, isn't it?
 
  • #10
Dick said:
If you write ##\sqrt{r} e^{i \frac{\theta}{2}}## as ##z^\frac{1}{2}## it's pretty clearly holomorphic, isn't it?
Well you can write ##z^{1/2}## as ##\frac{\mathrm{d} }{\mathrm{d} z}(\frac{2}{3}z^{3/2})## which I do believe means it must be holomorphic, but then my question is, is this true ##\forall z \in \mathbb{C}## ? so Why would they specify the set ##\Omega##?

edit: Actually then you would have to show that ##z^{3/2}## is holomorphic (either way a proper proof is required for this question) but again I can't understand why this would only be true on ##\Omega##
 
  • #11
GwtBc said:
Well you can write ##z^{1/2}## as ##\frac{\mathrm{d} }{\mathrm{d} z}(\frac{2}{3}z^{3/2})## which I do believe means it must be holomorphic, but then my question is, is this true ##\forall z \in \mathbb{C}## ? so Why would they specify the set ##\Omega##?

edit: Actually then you would have to show that ##z^{3/2}## is holomorphic (either way a proper proof is required for this question) but again I can't understand why this would only be true on ##\Omega##

Because ##z^\frac{1}{2}## isn't well defined over all of ##\mathbb{C}##. Every number has two different square roots. You need to pick a continuous branch of the function to say it's holomorphic. You can do that by omitting the negative real axis.
 
  • Like
Likes   Reactions: GwtBc
  • #12
GwtBc said:
Well you can write ##z^{1/2}## as ##\frac{\mathrm{d} }{\mathrm{d} z}(\frac{2}{3}z^{3/2})## which I do believe means it must be holomorphic

I was thinking more of a proof using the difference quotient.
 
  • #13
Dick said:
I was thinking more of a proof using the difference quotient.
As in a difference quotient w.r.t. ##z## directly?
 
  • #14
GwtBc said:
As in a difference quotient w.r.t. ##z## directly?

Sure, why not? Use the usual 'conjugate' trick.
 
  • #15
Can we not show ##f(z)^2=z## then ##f(z)=\sqrt{z}## and thus ##f(z)## is analytic in ##\Omega##?
 
  • #16
aheight said:
Can we not show ##f(z)^2=z## then ##f(z)=\sqrt{z}## and thus ##f(z)## is analytic in ##\Omega##?

Basically, yes. Except that ##\sqrt{z}## is not particularly well defined. I would just evaluate ##\frac{f(z+h)-f(z)}{h}##.
 
  • #17
Dick said:
Basically, yes. Except that ##\sqrt{z}## is not particularly well defined. I would just evaluate ##\frac{f(z+h)-f(z)}{h}##.

In the domain ##\Omega## specified in the problem statement, ##\sqrt{z}## is perfectly well-defined and is definitely holomorphic, at least if one specifies the principle branch. Furthermore, one can guarantee that the principle branch is the correct one to use in this problem just by evaluating ##f(1 + 0 i)## and comparing that with the principle value of ##\left. \sqrt{z}\:\right|_{z=1}##.
 

Similar threads

  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
2K