Prove the Identity: sin(2x) + sin(2y) + sin(2z) = 4sin(x)sin(y)sin(z)

  • Thread starter Thread starter Greg
  • Start date Start date
Click For Summary
SUMMARY

The identity $\sin(2x) + \sin(2y) + \sin(2z) = 4\sin(x)\sin(y)\sin(z)$, where $x + y + z = \pi$, has been proven through multiple approaches in the discussion. Solutions by lfdahl, MarkFL, and kaliprasad utilized trigonometric identities such as the sum-to-product identities and double angle formulas. Each solution methodically derived the identity by transforming the sine terms and applying known trigonometric relationships, confirming the equality as established fact.

PREREQUISITES
  • Understanding of trigonometric identities, specifically sum-to-product and double angle formulas.
  • Familiarity with the sine and cosine functions and their properties.
  • Knowledge of the relationship between angles in a triangle, particularly that $x + y + z = \pi$.
  • Ability to manipulate algebraic expressions involving trigonometric functions.
NEXT STEPS
  • Study the derivation of the sum-to-product identities in trigonometry.
  • Learn about the double angle formulas for sine and cosine.
  • Explore proofs of other trigonometric identities involving multiple angles.
  • Practice solving problems that involve manipulating trigonometric expressions under angle constraints.
USEFUL FOR

Mathematicians, students studying trigonometry, educators teaching trigonometric identities, and anyone interested in advanced algebraic manipulation of trigonometric functions.

Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Here is this week's POTW:

-----

Prove the identity $\sin(2x)+\sin(2y)+\sin(2z)=4\sin(x)\sin(y)\sin(z)$ where $x+y+z=\pi$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to lfdahl, MarkFL and kaliprasad for their correct solutions which you may find below.

lfdahl's solution:

[sp] I will make use of the following rules:
\[\sin \alpha + \sin \beta = 2\sin \left ( \frac{\alpha +\beta }{2} \right )\cos \left ( \frac{\alpha - \beta }{2} \right )\;\;\;(1).\]
\[\cos (\alpha \pm \beta ) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \;\;\; (2).\]
\[\left.\begin{matrix} \cos (\pi - \alpha ) = - \cos \alpha \\ \sin (\pi - \alpha ) = \sin \alpha \end{matrix}\right\} \;\;\;(3).\]
Furthermore, since $x+y+z = \pi$, we have from $(3).$: $\sin z = \sin (\pi – (x+y)) = \sin (x+y)$. In the same manner, we get: $\cos z = -\cos (x+y).$

First, I will rewrite the sum $\sin 2x + \sin 2y$:
\[\sin 2x + \sin 2y = 2\sin (x+y)\cos (x-y). \;\;\; (by \;\;1.) \\\\= 2\sin (x+y)\left ( \cos x \cos y + \sin x \sin y \right ) \;\;\;(by \;\;2.) \\\\= 2\sin z\left ( \cos x \cos y + \sin x \sin y \right ) \;\;\;(by \;\;3.) \\\\= 2 \sin x\sin y\sin z +2\sin z\cos x\cos y\]
Next, I rewrite the expression $\sin 2z$:
\[\sin 2z = 2 \sin z \cos z = -2\sin z \cos (x+y)\;\;\;(by \;\; 3.) \\\\ = -2\sin z\left ( \cos x \cos y - \sin x\sin y \right ) (by \;\; 2.) \\\\ = 2 \sin x\sin y\sin z-2\sin z \cos x \cos y\]

Finally, adding the expressions gives the desired result:

\[ \sin 2x + \sin 2y + \sin 2z = \\\\4 \sin x\sin y \sin z + 2\sin z\cos x\cos y - 2\sin z\cos x\cos y \\\\= 4 \sin x\sin y \sin z.\][/sp]

MarkFL's solution:

[sp] Consider that:

$$2z=2\pi-2(x+y)$$

And:

$$\sin(2\pi-\theta)=-\sin(\theta)$$

Which allows us to write:

$$\sin(2x)+\sin(2y)+\sin(2z)=\sin(2x)+\sin(2y)-\sin(2(x+y))$$

Now consider the sum to product identity:

$$\sin(\alpha)+\sin(\beta)=2\sin\left(\frac{\alpha+beta}{2}\right)\cos\left(\frac{\alpha-beta}{2}\right)$$

Which allows us to write:

$$\sin(2x)+\sin(2y)+\sin(2z)=2\sin(x+y)\cos(x-y)-\sin(2(x+y))$$

Now consider the double angle identity for sine:

$$\sin(2\theta)=2\sin(\theta)\cos(\theta)$$

Which allows us to write:

$$\sin(2x)+\sin(2y)+\sin(2z)=2\sin(x+y)\cos(x-y)-2\sin(x+y)\cos(x+y)$$

Factor:

$$\sin(2x)+\sin(2y)+\sin(2z)=2\sin(x+y)\left(\cos(x-y)-\cos(x+y)\right)$$

Now consider the sum to product identity:

$$\cos(\alpha)-\cos(\beta)=-2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

Which allows us to write:

$$\sin(2x)+\sin(2y)+\sin(2z)=2\sin(x+y)\left(-2\sin(x)\sin(-y)\right)$$

$$\sin(2x)+\sin(2y)+\sin(2z)=4\sin(x+y)\sin(x)\sin(y)$$

Consider:

$$x+y=\pi-z$$

And:

$$\sin(\pi-\theta)=\sin(\theta)$$

Which allows us to write:

$$\sin(2x)+\sin(2y)+\sin(2z)=4\sin(z)\sin(x)\sin(y)$$

$$\sin(2x)+\sin(2y)+\sin(2z)=4\sin(x)\sin(y)\sin(z)\quad\checkmark$$

Shown as desired.[/sp]

kaliprasad's solution:

[sp] We derive certain identities under above constraints to use below
$\sin (x+y) = \sin(180-z)=\sin\,z\cdots(1)$
$\cos(z) = -\cos(180-z) = -\cos(x+y)\cdots(2)$
using $\sin\, A + \sin\, B$ for 1st 2 terms and $\sin\ 2c$ for $3^{rd}$ term
$\sin 2x + \sin 2y + \sin 2z = 2\ sin (x+y) \cos (x-y) + 2 \sin\, z\ cos\, z$
$= 2\sin\, z \cos (x-y) - 2 \sin\, z \cos(x+y)$ (using (1) and (2))
$= 2\sin\, z (\cos (x-y) - \cos (x+ y)$
$= 2\sin\, z ( 2 \sin\, x \sin\, y)$ using (cos A - cos B) identity
$= 4 \sin\, x \sin\, y \sin\, z $,[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K