MHB Prove the polynomial f(x)=x^2-q is irreducible in F_p[x]?

  • Thread starter Thread starter k3232x
  • Start date Start date
  • Tags Tags
    Polynomial
k3232x
Messages
7
Reaction score
0
If p and q are prime numbers such that p is not a quadratic residue mod q. Show that if pq=-1 mod 4 then the polynomial f(x)=x^2-q is irreducible in F_p[x].
 
Physics news on Phys.org
Hi k3232x,

Welcome. (Wave) Please show what work you've done or what your thoughts are about this problem. That way, we can assist you better.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top