Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Prove -- The product of two compact spaces is compact

  1. Nov 28, 2016 #1

    TeethWhitener

    User Avatar
    Science Advisor
    Gold Member

    I'm attempting to prove that the product of two compact topological spaces is compact. My attempt at a proof runs something like this:

    Let ##Q## and ##R## be compact, and ##Q \times R = S##. From the product topology, any open set of ##S## has to have the form ##S_{AB} = Q_A \times R_B## (where ##Q_A## and ##R_B## are open in their respective topologies), so any open cover of ##S## can be written
    $$\bigcup_{(i,j) \in I \times J} S_{ij} =\bigcup_{(i,j) \in I \times J} (Q_i \times R_j)$$
    where ##I## and ##J## are possibly infinite.

    Now we show that ##\bigcup_i Q_i## covers ##Q## and ##\bigcup_j R_j## covers ##R## if and only if ##\bigcup_{i,j} (Q_i \times R_j)## covers ##S##.

    1) "Only if" direction: Let ##\bigcup_i Q_i## cover ##Q## and ##\bigcup_j R_j## cover ##R##. Then
    $$\bigcup_i Q_i \times \bigcup_j R_j = \bigcup_{(i,j)} (Q_i \times R_j)$$
    since the Cartesian product distributes across unions. I claim this set covers ##S##. Assume it doesn't. Then ##\exists (q,r) \in S## such that ##(q,r) \notin \bigcup_{(i,j)} (Q_i \times R_j)##; in other words, ##q \notin \bigcup_i Q_i ## or ##r \notin \bigcup_j R_j ##. But this can't happen because ##\bigcup_i Q_i## and ##\bigcup_j R_j ## cover ##Q## and ##R## respectively.
    Therefore, if ##\bigcup_i Q_i## covers ##Q## and ##\bigcup_j R_j## covers ##R##, then ##\bigcup_{(i,j)} (Q_i \times R_j)## covers ##S##.
    2) "If" direction (I prove the contrapositive): Suppose ##\bigcup_j R_j## does not cover ##R##. Then ##\exists r \in R## such that ##r \notin \bigcup_j R_j##. This means that ##\exists (q,r) \in S## such that ##(q,r) \notin \bigcup_i Q_i \times \bigcup_j R_j = \bigcup_{(i,j)} (Q_i \times R_j)##. So ##\bigcup_i Q_i \times \bigcup_j R_j = \bigcup_{(i,j)} (Q_i \times R_j)## doesn't cover ##S##.

    Since ##Q## and ##R## are compact, there exist finite subcovers of ##\bigcup_i Q_i## and ##\bigcup_j R_j## (call them ##\bigcup_A Q_A## and ##\bigcup_B R_B##). We've just proven that the open covers of ##S## are precisely the Cartesian product of covers of ##Q## and ##R##. So for any cover of ##S## (given by ##\bigcup_{(i,j)} (Q_i \times R_j)##), there exists a finite subcover given by ##\bigcup_{(A,B)} (Q_A \times R_B)##. Therefore, ##S## is compact.

    Is this a valid proof?
     
  2. jcsd
  3. Nov 28, 2016 #2

    Erland

    User Avatar
    Science Advisor

    No, an open set in ##S## is a union of sets of this kind. This union can be taken from an arbitrary large family of sets of this kind.
     
  4. Nov 28, 2016 #3

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    This is not true. For example, if you have an open cover, you could add a further set ##A \times B## where these sets do not appear in your open cover. This is still an open cover, but it does not include ##A \times R_1## etc.
     
  5. Nov 28, 2016 #4

    TeethWhitener

    User Avatar
    Science Advisor
    Gold Member

    Ok, I think what's tripping me up is that a subcover is a subset of the collection of open sets that makes up the cover, rather than a subset of the union of those sets. I'll think a little harder and get back to you.
     
  6. Nov 28, 2016 #5

    Svein

    User Avatar
    Science Advisor

    This is the Tychonoff theorem. Google it (the proof is not trivial).
     
  7. Nov 28, 2016 #6

    Krylov

    User Avatar
    Science Advisor
    Education Advisor

    For two (or finitely many) spaces Tikhonov's theorem (equivalent to AC) is not necessary and, indeed, overkill in my opinion. I would recommend that the OP tries to continue his attempts to give his own proof. It is a good exercise.
     
  8. Nov 29, 2016 #7

    TeethWhitener

    User Avatar
    Science Advisor
    Gold Member

    Ok, how about this:

    If ##Q\times R = S##, then as @Erland said, any open set in ##S## has the form ##S_{ab} = \bigcup_{a,b}(Q_{a}\times R_{b})##, where ##a\in A## and ##b\in B##. Then an open cover of ##S## is a collection of sets ##S_i## such that
    $$S \subseteq \bigcup_i S_i=\bigcup_i \bigcup_{a,b}(Q_{a}\times R_{b})$$
    where ##i\in I##. I think I can push the indexes in the separate unions together like so:
    $$\bigcup_i \bigcup_{a,b}(Q_{a}\times R_{b}) = \bigcup_{(a,b,i)} (Q_{(a,i)} \times R_{(b,i)})$$
    where ##(a,b,i)\in A\times B \times I##, or something along these lines.
    From my first post, I know that in order for ##\bigcup_i S_i## to cover ##S##, ##\bigcup_{(a,i)}Q_{(a,i)}## has to cover ##Q## and ##\bigcup_{(b,i)}R_{(b,i)}## has to cover ##R##. Since ##Q## and ##R## are compact, a finite subset of ##(a,i) \in A\times I## covers ##Q## (call it ##(\alpha, j) \in A' \times J##) and likewise for ##R## (call it ##(\beta,j) \in B' \times J##). In order for ##A' \times J## to be finite, both ##A'## and ##J## have to be finite. This means that there is a subcover of
    $$\bigcup_{(a,b,i)} (Q_{(a,i)} \times R_{(b,i)})$$
    indexed by ##J \subseteq I## such that ##J## is finite.

    What it boils down to is that I'm not quite confident about how to handle the union of unions while preserving the granularity of the individual sets in the cover of ##S##. Is the idea of the proof above even on the right track?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Prove -- The product of two compact spaces is compact
  1. Compact Spaces (Replies: 4)

Loading...