# What is Compact: Definition and 323 Discussions

In mathematics, more specifically in general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being closed (i.e., containing all its limit points) and bounded (i.e., having all its points lie within some fixed distance of each other).
Examples include a closed interval, a rectangle, or a finite set of points. This notion is defined for more general topological spaces than Euclidean space in various ways.
One such generalization is that a topological space is sequentially compact if every infinite sequence of points sampled from the space has an infinite subsequence that converges to some point of the space.
The Bolzano–Weierstrass theorem states that a subset of Euclidean space is compact in this sequential sense if and only if it is closed and bounded.
Thus, if one chooses an infinite number of points in the closed unit interval [0, 1], some of those points will get arbitrarily close to some real number in that space.
For instance, some of the numbers in the sequence 1/2, 4/5, 1/3, 5/6, 1/4, 6/7, … accumulate to 0 (while others accumulate to 1).
The same set of points would not accumulate to any point of the open unit interval (0, 1); so the open unit interval is not compact. Euclidean space itself is not compact since it is not bounded.
In particular, the sequence of points 0, 1, 2, 3, …, which is not bounded, has no subsequence that converges to any real number.
The concept of a compact space was formally introduced by Maurice Fréchet in 1906 to generalize the Bolzano–Weierstrass theorem to spaces of functions, rather than geometrical points. Applications of compactness to classical analysis, such as the Arzelà–Ascoli theorem and the Peano existence theorem are of this kind. Following the initial introduction of the concept, various equivalent notions of compactness, including sequential compactness and limit point compactness, were developed in general metric spaces. In general topological spaces, however, different notions of compactness are not necessarily equivalent. The most useful notion, which is the standard definition of the unqualified term compactness, is phrased in terms of the existence of finite families of open sets that "cover" the space in the sense that each point of the space lies in some set contained in the family. This more subtle notion, introduced by Pavel Alexandrov and Pavel Urysohn in 1929, exhibits compact spaces as generalizations of finite sets. In spaces that are compact in this sense, it is often possible to patch together information that holds locally—that is, in a neighborhood of each point—into corresponding statements that hold throughout the space, and many theorems are of this character.
The term compact set is sometimes used as a synonym for compact space, but often refers to a compact subspace of a topological space as well.

View More On Wikipedia.org
1. ### High Wattage CPUs: Engineering Plausibility?

Not sure if this would best fit here or under Computing and Technology, but since it has more to do with the engineering plausibility I'm putting it here for now. I have a project which would benefit from CPUs that use a very high amount of wattage. Of course, this is the opposite of what the...

3. ### MHB How can we prove the inequality for the supremum and infimum of f*g and f*g?

I am reading J. J. Duistermaat and J. A. C. Kolk: Multidimensional Analysis Vol.II Chapter 6: Integration ... I need help with the proof of Theorem 6.2.8 Part (iii) ...The Definition of Riemann integrable functions with compact support and Theorem 6.2.8 and a brief indication of its proof...

43. ### I Prove -- The product of two compact spaces is compact

I'm attempting to prove that the product of two compact topological spaces is compact. My attempt at a proof runs something like this: Let ##Q## and ##R## be compact, and ##Q \times R = S##. From the product topology, any open set of ##S## has to have the form ##S_{AB} = Q_A \times R_B##...
44. ### I Proof check: S in C Compact implies S is closed and bounded

I am using Lang's book on complex analysis, i am trying to reprove theorem 4.1 which is a simple theorem: Let Compact(S \in \mathbb{C}) \iff Closed(S) \land Bounded(S) I will show my attempt on one direction of the proof only, before even trying the other direction. Assume S is compact Idea...
45. ### Insights Digital Camera Buyer's Guide: Compact Point and Shoot - Comments

Andy Resnick submitted a new PF Insights post Digital Camera Buyer's Guide: Compact Point and Shoot Continue reading the Original PF Insights Post.
46. ### Fermions in infinite square well in compact geometry

Homework Statement The global topology of a ##2+1##-dimensional universe is of the form ##T^{2}\times R_{+}##, where ##T^{2}## is a two-dimensional torus and ##R_{+}## is the non-compact temporal direction. What is the Fermi energy for a system of spin-##\frac{1}{2}## particles in this...
47. ### Good compact chemistry overview for scientists

Can someone recommend a good chemistry overview/ review? Some pdf document perhaps, not more than 200 pages or so. Notes that do not assume you are complete beginner, but you have a science (physics) background. That gives brief summaries and the highlights of all the topics that are dealt with...
48. ### A On embeddings of compact manifolds

I have found the following entry on his blog by Terence Tao about embeddings of compact manifolds into Euclidean space (Whitney, Nash). It contains the theorems and (sketches of) proofs. Since it is rather short some of you might be interested in.
49. ### I Why the space X=(0,1) is (not sequentially) compact?

My problem is that the space X= (0,1) is not sequentially compact and compact at the same time. It is not sequentially compact: If we define the sequence (\frac{1}{n}) we can show that it is not sequentially compact as the sequence converges to 0, but 0 \notin X. It is compact: On the other...
50. ### A Euclidean signature and compact gauge group

Hello everyone, I have been reading around that when performing the analytic continuation to Euclidean space (t\to-i\tau) one also has to continue the gauge field (A_t\to iA_4) in order to keep the gauge group compact. I already knew that the gauge field had to be continued as well but I didn't...