MHB Prove the sum identity ∑n2n=2e.

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Identity Sum
AI Thread Summary
The discussion centers on proving the identity ∑n^2/n! = 2e. Participants commend kaliprasad for providing a fine solution to the problem. Serena also receives praise for her elegant approach to the proof. The conversation highlights the appreciation for effective mathematical solutions. Overall, the thread emphasizes the successful demonstration of the sum identity.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove that

$$\sum_{n=0}^\infty \frac{n^2}{n!}=2e.$$
 
Mathematics news on Phys.org
lfdahl said:
Prove that

$$\sum_{n=0}^\infty \frac{n^2}{n!}=2e.$$

$\sum_{n=0}^{\infty}\frac{n^2}{n!}= \sum_{n=0}^{\infty}\frac{n(n-1)+n}{n!}= \sum_{n=0}^{\infty}\frac{n(n-1)+n}{n!}$
$=\sum_{n=1}^{\infty}(\frac{n(n-1)}{n!} +\frac{n}{n!})$
$=\sum_{n=2}^{\infty}(\frac{n(n-1)}{n!}) +\sum_{n=1}^{\infty}\frac{n}{n!}$ as 1st 2 terms in 1st sum are zero
$=\sum_{n=2}^{\infty}\frac{1}{(n-2)!} +\sum_{n=1}^{\infty}\frac{1}{(n-1)!}$
$=\sum_{n=0}^{\infty}\frac{1}{n!} +\sum_{n=0}^{\infty}\frac{1}{n!}$
$=e + e = 2e$
 
kaliprasad said:
$\sum_{n=0}^{\infty}\frac{n^2}{n!}= \sum_{n=0}^{\infty}\frac{n(n-1)+n}{n!}= \sum_{n=0}^{\infty}\frac{n(n-1)+n}{n!}$
$=\sum_{n=1}^{\infty}(\frac{n(n-1)}{n!} +\frac{n}{n!})$
$=\sum_{n=2}^{\infty}(\frac{n(n-1)}{n!}) +\sum_{n=1}^{\infty}\frac{n}{n!}$ as 1st 2 terms in 1st sum are zero
$=\sum_{n=2}^{\infty}\frac{1}{(n-2)!} +\sum_{n=1}^{\infty}\frac{1}{(n-1)!}$
$=\sum_{n=0}^{\infty}\frac{1}{n!} +\sum_{n=0}^{\infty}\frac{1}{n!}$
$=e + e = 2e$

Well done, kaliprasad! Thankyou very much for your participation and a fine solution!(Yes)
 
Nice solution kaliprasad!

Just to provide another one:
Let $f(x)=\sum\limits_{n=1}^\infty \frac{n^2 x^{n-1}}{n!}$.
Note that the requested sum is equal to $f(1)$, which intentionally starts at $n=1$, possible since the first term is $0$ anyway.
Then $F(x)=\int_0^x f(x) = \sum \frac{n x^n}{n!} = x\sum \frac{x^{n-1}}{(n-1)!} = xe^x$.
Therefore $f(x)=F'(x)=e^x+xe^x$.
Thus the requested sum is $f(1)=2e. \ \blacksquare$
 
I like Serena said:
Nice solution kaliprasad!

Just to provide another one:
Let $f(x)=\sum\limits_{n=1}^\infty \frac{n^2 x^{n-1}}{n!}$.
Note that the requested sum is equal to $f(1)$, which intentionally starts at $n=1$, possible since the first term is $0$ anyway.
Then $F(x)=\int_0^x f(x) = \sum \frac{n x^n}{n!} = x\sum \frac{x^{n-1}}{(n-1)!} = xe^x$.
Therefore $f(x)=F'(x)=e^x+xe^x$.
Thus the requested sum is $f(1)=2e. \ \blacksquare$

Another very fine solution, I like Serena! Thankyou very much for your elegant approach!(Handshake)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top