MHB Prove the sum identity ∑n2n=2e.

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Identity Sum
Click For Summary
The discussion centers on proving the identity ∑n^2/n! = 2e. Participants commend kaliprasad for providing a fine solution to the problem. Serena also receives praise for her elegant approach to the proof. The conversation highlights the appreciation for effective mathematical solutions. Overall, the thread emphasizes the successful demonstration of the sum identity.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove that

$$\sum_{n=0}^\infty \frac{n^2}{n!}=2e.$$
 
Mathematics news on Phys.org
lfdahl said:
Prove that

$$\sum_{n=0}^\infty \frac{n^2}{n!}=2e.$$

$\sum_{n=0}^{\infty}\frac{n^2}{n!}= \sum_{n=0}^{\infty}\frac{n(n-1)+n}{n!}= \sum_{n=0}^{\infty}\frac{n(n-1)+n}{n!}$
$=\sum_{n=1}^{\infty}(\frac{n(n-1)}{n!} +\frac{n}{n!})$
$=\sum_{n=2}^{\infty}(\frac{n(n-1)}{n!}) +\sum_{n=1}^{\infty}\frac{n}{n!}$ as 1st 2 terms in 1st sum are zero
$=\sum_{n=2}^{\infty}\frac{1}{(n-2)!} +\sum_{n=1}^{\infty}\frac{1}{(n-1)!}$
$=\sum_{n=0}^{\infty}\frac{1}{n!} +\sum_{n=0}^{\infty}\frac{1}{n!}$
$=e + e = 2e$
 
kaliprasad said:
$\sum_{n=0}^{\infty}\frac{n^2}{n!}= \sum_{n=0}^{\infty}\frac{n(n-1)+n}{n!}= \sum_{n=0}^{\infty}\frac{n(n-1)+n}{n!}$
$=\sum_{n=1}^{\infty}(\frac{n(n-1)}{n!} +\frac{n}{n!})$
$=\sum_{n=2}^{\infty}(\frac{n(n-1)}{n!}) +\sum_{n=1}^{\infty}\frac{n}{n!}$ as 1st 2 terms in 1st sum are zero
$=\sum_{n=2}^{\infty}\frac{1}{(n-2)!} +\sum_{n=1}^{\infty}\frac{1}{(n-1)!}$
$=\sum_{n=0}^{\infty}\frac{1}{n!} +\sum_{n=0}^{\infty}\frac{1}{n!}$
$=e + e = 2e$

Well done, kaliprasad! Thankyou very much for your participation and a fine solution!(Yes)
 
Nice solution kaliprasad!

Just to provide another one:
Let $f(x)=\sum\limits_{n=1}^\infty \frac{n^2 x^{n-1}}{n!}$.
Note that the requested sum is equal to $f(1)$, which intentionally starts at $n=1$, possible since the first term is $0$ anyway.
Then $F(x)=\int_0^x f(x) = \sum \frac{n x^n}{n!} = x\sum \frac{x^{n-1}}{(n-1)!} = xe^x$.
Therefore $f(x)=F'(x)=e^x+xe^x$.
Thus the requested sum is $f(1)=2e. \ \blacksquare$
 
I like Serena said:
Nice solution kaliprasad!

Just to provide another one:
Let $f(x)=\sum\limits_{n=1}^\infty \frac{n^2 x^{n-1}}{n!}$.
Note that the requested sum is equal to $f(1)$, which intentionally starts at $n=1$, possible since the first term is $0$ anyway.
Then $F(x)=\int_0^x f(x) = \sum \frac{n x^n}{n!} = x\sum \frac{x^{n-1}}{(n-1)!} = xe^x$.
Therefore $f(x)=F'(x)=e^x+xe^x$.
Thus the requested sum is $f(1)=2e. \ \blacksquare$

Another very fine solution, I like Serena! Thankyou very much for your elegant approach!(Handshake)
 

Similar threads

Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K