MHB Prove the sum is less than 2016

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2016 Sum
Click For Summary
The discussion focuses on proving the inequality that the sum of the series $$\sqrt{\frac{1\cdot 2}{3^2}}+\sqrt{\frac{2\cdot 3}{5^2}}+\sqrt{\frac{3\cdot 4}{7^2}}+\cdots+\sqrt{\frac{4032\cdot 4033}{8065^2}}$$ is less than 2016. Participants explore various mathematical approaches and techniques to demonstrate this inequality. The series involves terms that combine factorial-like products divided by squares of odd integers. The conversation highlights the importance of bounding the terms effectively to establish the overall sum's limit. The conclusion emphasizes the successful proof of the inequality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove the inequality

$$\sqrt{\frac{1\cdot 2}{3^2}}+\sqrt{\frac{2\cdot 3}{5^2}}+\sqrt{\frac{3\cdot 4}{7^2}}+\cdots+\sqrt{\frac{4032\cdot 4033}{8065^2}}<2016$$
 
Mathematics news on Phys.org
anemone said:
Prove the inequality

$$\sqrt{\frac{1\cdot 2}{3^2}}+\sqrt{\frac{2\cdot 3}{5^2}}+\sqrt{\frac{3\cdot 4}{7^2}}+\cdots+\sqrt{\frac{4032\cdot 4033}{8065^2}}<2016$$

we have n^{th} term = $\frac{\sqrt{n\cdot (n+1)}}{2n+1}$
$= \frac{\sqrt{n^2+n}}{2n+1}$
$= \frac{\sqrt{n^2+n+\frac{1}{4}-\frac{1}{4}}}{2n+1}$
$= \frac{\sqrt{(n+\frac{1}{2})^2-\frac{1}{4}}}{2n+1}$
$ < \frac{n+\frac{1}{2}}{2n+1}$
$ < \frac{1}{2}$
each term is $ < \frac{1}{2}$ and there are 4032 terms so sum is less than 2016
 
Very well done, kaliprasad!
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
936
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K