Happiness
- 686
- 30
How is (5.240b) derived? I get {U^{-1}}^\dagger(t, t_0)\,U^{-1}(t, t_0)=I instead.
My steps:
\begin{align}<\psi(t_0)\,|\,\psi(t_0)>&=\,<U(t_0, t)\,\psi(t)\,|\,U(t_0, t)\,\psi(t)>\\<br /> &=\,<U^{-1}(t, t_0)\,\psi(t)\,|\,U^{-1}(t, t_0)\,\psi(t)>\\<br /> &=\,<\psi(t)\,|\,{U^{-1}}^\dagger(t, t_0)\,U^{-1}(t, t_0)\,|\,\psi(t)>\end{align}
Also, to get (5.240a), do we use the fact that <\psi(t_0)\,|\,\psi(t_0)>\,=\,<\psi(t_0)\,|\,U^\dagger(t, t_0)\,U(t, t_0)\,|\,\psi(t_0)>is true for any \psi(t_0)?
My steps:
\begin{align}<\psi(t_0)\,|\,\psi(t_0)>&=\,<U(t_0, t)\,\psi(t)\,|\,U(t_0, t)\,\psi(t)>\\<br /> &=\,<U^{-1}(t, t_0)\,\psi(t)\,|\,U^{-1}(t, t_0)\,\psi(t)>\\<br /> &=\,<\psi(t)\,|\,{U^{-1}}^\dagger(t, t_0)\,U^{-1}(t, t_0)\,|\,\psi(t)>\end{align}
Also, to get (5.240a), do we use the fact that <\psi(t_0)\,|\,\psi(t_0)>\,=\,<\psi(t_0)\,|\,U^\dagger(t, t_0)\,U(t, t_0)\,|\,\psi(t_0)>is true for any \psi(t_0)?