Do Time-ordering and Time Integrals commute? Peskin(4.22)(4.31)(4.44)

In summary: T\left\{ \cdots\phi \left( t\prime_1 \right) \phi \left( t_1 \right) \cdots \phi \left( t_n \right)... \right\}\\ &\cdots\\ &=\int_{t_0}^t{d}t_1\cdots dt_nT\left\{ \cdots\phi \left( t\prime_m \right) \cdots \phi \left( t_n \right)... \right\}\\ &=\int_{t
  • #1
George Wu
6
3
TL;DR Summary
In Peskin's QFT textbook, according to the explanation below(4.22), the Time-ordered exponential is just a notation, however in the derivation of (4.31),the Time-ordered exponential seems more than just a notation.
In Peskin P85:
1683566820582.png

It says the Time-ordered exponential is just a notation,in my understanding, it means
$$\begin{aligned}
&T\left\{ \exp \left[ -i\int_{t_0}^t{d}t^{\prime}H_I\left( t^{\prime} \right) \right] \right\}\\
&\ne T\left\{ 1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2H_I\left( t_1 \right) H_I\left( t_2 \right) +\cdots \right\}\\
\end{aligned}$$
However in the derivation of (4.31):
1683567804588.png

A way to derivate this is: Jens Wagemaker (https://physics.stackexchange.com/users/103623/jens-wagemaker), Why can the time-ordered exponentials be brought to the right?, URL (version: 2023-05-06): https://physics.stackexchange.com/q/762829
Here is his way of derivation:
Note that the time ordering operator is like a sorting algorithm, hence it doesn't matter if we permute something before applying the time ordering operator. In particular we can perform some additional time-ordering by inserting an additional time-ordering operator:
$$\begin{aligned}
A&=T\left\{ \phi _I(x)\phi _I(y)\exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)T\left\{ \exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\} \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)U(T,-T) \right\}\\
\end{aligned}$$
We show the case ##x_0>y_0##. By 4.26 we get
$$U(T,-T)=U\left(T, x_0\right) U\left(x_0, y_0\right) U\left(y_0,-T\right)$$
which we substitute.
$$A=T\left\{ \phi _I(x)\phi _I(y)U\left( T,x_0 \right) U\left( x_0,y_0 \right) U\left( y_0,-T \right) \right\} $$
Now we want to apply the time ordering. For this we note that the ##U\left(T, x_0\right)## contains only operators with the with in the interval ##\left[T, x_0\right]##, and similar for the terms ##U\left(x_0, y_0\right)## and##U\left(y_0,-T\right)##. Hence, if we apply the time ordering we get.
##A=U\left(T, x_0\right) \phi_I(x) U\left(x_0, y_0\right) \phi_I(y) U\left(y_0,-T\right)##, which occurs in the numerator of your second expression.
This step seems straightforward:
$$\begin{aligned}
A&=T\left\{ \phi _I(x)\phi _I(y)\exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)T\left\{ \exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\} \right\}\\
\end{aligned}$$
However this means:
$$\begin{aligned}
A&=T\left\{ \phi _I(x)\phi _I(y)\exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)\left[ 1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2H_I\left( t_1 \right) H_I\left( t_2 \right) +\cdots \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)T\left[ 1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2H_I\left( t_1 \right) H_I\left( t_2 \right) +\cdots \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)\left[ 1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2T\left\{ H_I\left( t_1 \right) H_I\left( t_2 \right) \right\} +\cdots \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)T\left\{ \exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\} \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)U(T,-T) \right\}\\
\end{aligned}$$
In this process we use:
$$\begin{aligned}
&T\left\{ 1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2H_I\left( t_1 \right) H_I\left( t_2 \right) +\cdots \right\}\\
&=1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2T\left\{ H_I\left( t_1 \right) H_I\left( t_2 \right) \right\} +\cdots\\
\end{aligned}$$
which means :
$$
T\int_{t_0}^t{d}t_1\cdots dt_nH_I\left( t_1 \right) \cdots H_I\left( t_n \right) =\int_{t_0}^t{d}t_1\cdots dt_nT\left\{ H_I\left( t_1 \right) \cdots H_I\left( t_n \right) \right\} $$
What's more, in the derivation of (4.44):
1683568909241.png

In order to apply wick's theorm, Time-ordering must go inside the integral.
So my question is:
Does Time-ordering and Time Integral commute?
Or in another word:
Can Time-ordering can go inside the integral?
 
Last edited:
Physics news on Phys.org
  • #2
I have found a great answer:
Prahar (https://physics.stackexchange.com/users/8821/prahar), Time ordering of integral, URL (version: 2022-12-17): https://physics.stackexchange.com/q/741494
$$T\int_{t_0}^t{d}t_1\cdots dt_nH_I\left( t_1 \right) \cdots H_I\left( t_n \right)$$
is defined to equal to
$$\int_{t_0}^t{d}t_1\cdots dt_nT\left\{ H_I\left( t_1 \right) \cdots H_I\left( t_n \right) \right\}$$
Otherwise the left side does mean anything.
This definition can be extended to cases like##T\left\{ \phi \left( t\prime_1 \right) \cdots \phi \left( t\prime_m \right) \int_{t_0}^t{d}t_1\cdots dt_n\phi \left( t_1 \right) \cdots \phi \left( t_n \right) \right\} ##
$$\begin{aligned}
T\left\{ \phi \left( t\prime_1 \right) \cdots \phi \left( t\prime_m \right) \int_{t_0}^t{d}t_1\cdots dt_n\phi \left( t_1 \right) \cdots \phi \left( t_n \right) \right\} :&=T\left\{ \phi \left( t\prime_1 \right) \cdots \phi \left( t\prime_m \right) \int_{t_0}^t{d}t_1\cdots dt_nT\left\{ \phi \left( t_1 \right) \cdots \phi \left( t_n \right) \right\} \right\}\\
&=\int_{t_0}^t{d}t_1\cdots dt_nT\left\{ \phi \left( t\prime_1 \right) \cdots \phi \left( t\prime_m \right) \phi \left( t_1 \right) \cdots \phi \left( t_n \right) \right\}\\
\end{aligned}$$
 
  • Like
Likes vanhees71
  • #3
Yes, they commute and it can go inside the integral. Your first inequality should be the equality.
 
  • Like
Likes vanhees71
  • #4
I think it's a definition of the time-ordering symbol to apply it to the integrand, i.e., to commute it with the integral. It's defined to get a compact notation of the Dyson series of time-dependent perturbation theory in terms of a "time-ordered exponential". If you look at the derivation of this formula, that'll become clear. See, e.g., Sect. 1.9, where it's derived for potential scattering in non-relativistic QM:

https://itp.uni-frankfurt.de/~hees/publ/lect.pdf
 
  • Like
Likes George Wu

1. What is the significance of time-ordering and time integrals in physics?

Time-ordering and time integrals are important concepts in physics that help us understand the behavior of particles and systems over time. Time-ordering refers to arranging operators in a specific order based on their time dependencies, while time integrals involve integrating over a range of time to calculate the total effect of an operator on a system.

2. What does it mean for time-ordering and time integrals to commute?

In physics, two operators are said to commute if their order does not affect the outcome of the calculation. This means that the operators can be rearranged without changing the result. In the context of time-ordering and time integrals, this means that the order in which these operations are performed does not alter the final result.

3. How do we determine if time-ordering and time integrals commute?

The commutativity of time-ordering and time integrals can be determined by using the commutation relations of the operators involved. In Peskin's equations 4.22, 4.31, and 4.44, the commutation relations are explicitly stated, and it can be seen that the time-ordering and time integrals commute in these cases.

4. What are the implications of time-ordering and time integrals commuting?

If time-ordering and time integrals commute, it simplifies the calculations involved in solving equations and analyzing physical systems. It allows us to rearrange operators in a way that is convenient for solving problems and can lead to more efficient and accurate results.

5. Are there any cases where time-ordering and time integrals do not commute?

Yes, there are cases where time-ordering and time integrals do not commute. This usually occurs when dealing with non-commuting operators, such as in quantum mechanics. In these cases, the order of operations can significantly affect the outcome of the calculation, and special techniques must be used to account for this non-commutativity.

Similar threads

Replies
2
Views
574
Replies
6
Views
1K
Replies
5
Views
1K
  • Quantum Physics
Replies
4
Views
930
Replies
41
Views
4K
  • Quantum Physics
Replies
8
Views
731
  • Quantum Physics
Replies
1
Views
1K
Replies
8
Views
1K
Replies
10
Views
1K
  • Quantum Physics
Replies
3
Views
836
Back
Top