We will make use of the identity \[\sec^2 x - \tan^2 x = 1.\] This identity follows from the familiar Pythagorean identity, \[\sin^2 x + \cos^2 x = 1,\] if you divide both sides by $\cos^2 x$ and rearrange the terms.
By factoring the original left-hand side, we have
\begin{align*}
\sec^4 x - \tan^4 x &= \left(\sec^2 x + \tan^2 x\right)\left(\sec^2 x - \tan^2 x\right)\\
&= \left(\sec^2 x + \tan^2 x\right)(1)\\
&= \left(\sec^2 x + \tan^2 x\right).
\end{align*}