Prove the trigonometry identity and hence solve given problem

AI Thread Summary
The discussion focuses on proving a trigonometric identity and solving related problems. The initial approach involves using the half-angle tangent formula, but some participants suggest that the proof lacks clarity and reversibility in its steps. Alternative methods are proposed, including starting from known sine and cosine identities to derive the desired expression. A participant also mentions using Euler's formula and the binomial theorem for further insights into trigonometric functions. The conversation highlights the importance of clear logical steps in mathematical proofs.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
Prove that ##\csc ∅ - \cot ∅ = \tan \dfrac {∅}{2}##. Hence, deduce that ##\tan \dfrac {π}{8} = \sqrt{2} -1## and find ##\tan \dfrac {3π}{8}## in terms of ##a+ b\sqrt{2}##
Relevant Equations
Trigonometry.
Refreshing on trig. today...a good day it is...ok find the text problem here; With maths i realize one has to keep on refreshing at all times... my target is to solve 5 questions from a collection of 10 textbooks i.e 50 questions on a day-day basis...motivation from late Erdos :biggrin::wink:...( pure math, applied, stats, mechanics} each and every day starting today...i will only post the interesting questions...

1665233594444.png


Ok my approach; let ##\tan \dfrac{∅}{2}=t##

##\dfrac{1}{\sin ∅} - \dfrac{\cos∅ }{\sin ∅}=t##

##\dfrac{1-\cos ∅}{\sin ∅}=t##

##\dfrac{1+t^2-(1-t^2)}{1+t^2} ⋅\dfrac{1+t^2}{2t}=t## thus true.

for second part;

Let ##\dfrac{∅}{2}=\dfrac{π}{8}##

it follows that ##∅ = \dfrac{π}{4}##

therefore; ##\dfrac{1}{\sin \dfrac{1}{4} π} - \dfrac{\cos\dfrac{1}{4}π }{\sin \dfrac{1}{4}π} ##=## \sqrt{2} ## ##-\dfrac {1}{\sqrt{2}}## ⋅## \sqrt{2}##= ##\sqrt{2}-1##

Lastly;

##\tan \dfrac{3π}{8}= \tan \dfrac{π}{4} +\tan \dfrac{π}{8}##

=## \dfrac{\tan \dfrac{π}{4} +\tan \dfrac{π}{8}}{1-\tan \dfrac{π}{4} ⋅\tan \dfrac{π}{8}}##

=##\dfrac{1+\sqrt{2}-1}{1-\sqrt{2}+1} ##

= ##\dfrac{\sqrt{2}}{2-\sqrt{2}}## ⋅ ##\dfrac{2+\sqrt{2}}{2+\sqrt{2}}##

=##\dfrac{2+2\sqrt{2}}{2}= 1+\sqrt{2}##

Of course i know there might be a slightly different approach...would appreciate any comments. Cheers guys!
 
Last edited:
Physics news on Phys.org
chwala said:
Ok my approach; let ##\tan \dfrac{∅}{2}=t##

##\dfrac{1}{\sin ∅} - \dfrac{\cos∅ }{\sin ∅}=t##
You're assuming what you intend to prove. The only time this is a reasonable approach is when all of the subsequent steps are reversible; i.e., one-to-one operations.

Since you haven't shown that all of your applied operations are one-to-one, a better way is to start with the expression on one side, and then manipulate it to get a sequence of equal expressions that eventually are equal to the other side of the equation you want to prove.
chwala said:
##\dfrac{1-\cos ∅}{\sin ∅}=t##

##\dfrac{1+t^2-(1-t^2)}{1+t^2} ⋅\dfrac{1+t^2}{2t}=t## thus true.
It's not at all obvious to me how the left side above is equal to ##{1 - \cos(\theta)}{\sin(\theta)}##.
If in fact they are equal, then you have proved that t = t, which is trivial.
chwala said:
for second part;

Let ##\dfrac{∅}{2}=\dfrac{π}{8}##

it follows that ##∅ = \dfrac{π}{4}##

therefore; ##\dfrac{1}{\sin \dfrac{1}{4} π} - \dfrac{\cos\dfrac{1}{4}π }{\sin \dfrac{1}{4}π} ##=## \sqrt{2} ## ##-\dfrac {1}{\sqrt{2}}## ⋅## \sqrt{2}##= ##\sqrt{2}-1##

Lastly;

##\tan \dfrac{3π}{8}= \tan \dfrac{π}{4} +\tan \dfrac{π}{8}##

=## \dfrac{\tan \dfrac{π}{4} +\tan \dfrac{π}{8}}{1-\tan \dfrac{π}{4} ⋅\tan \dfrac{π}{8}}##

=##\dfrac{1+\sqrt{2}-1}{1-\sqrt{2}+1} ##

= ##\dfrac{\sqrt{2}}{2-\sqrt{2}}## ⋅ ##\dfrac{2+\sqrt{2}}{2+\sqrt{2}}##

=##\dfrac{2+2\sqrt{2}}{2}= 1+\sqrt{2}##

Of course i know there might be a slightly different approach...would appreciate any comments. Cheers guys!
 
I would start from <br /> \begin{split}<br /> \cos \theta &amp;= 1 - 2\sin^2(\theta/2) \\<br /> \sin \theta &amp;= 2\cos(\theta/2)\sin(\theta/2) \end{split} and substitute these into <br /> \csc\theta - \cot\theta = \frac{1 - \cos \theta}{\sin \theta}.
 
  • Like
Likes chwala and Mark44
Mark44 said:
You're assuming what you intend to prove. The only time this is a reasonable approach is when all of the subsequent steps are reversible; i.e., one-to-one operations.

Since you haven't shown that all of your applied operations are one-to-one, a better way is to start with the expression on one side, and then manipulate it to get a sequence of equal expressions that eventually are equal to the other side of the equation you want to prove.
It's not at all obvious to me how the left side above is equal to ##{1 - \cos(\theta)}{\sin(\theta)}##.
If in fact they are equal, then you have proved that t = t, which is trivial.
Noted @Mark44 ... Ok we can have;

##\dfrac{1-\cosθ}{\sin θ}=\dfrac{\sin \dfrac{θ}{2}}{cos \dfrac{θ}{2}}##

We know from;

##\cos 2θ =\cos^2θ-\sin^2 θ##

##\cos 2θ =1-2\sin^2 θ## , therefore it follows that;
##\cos θ = 1- 2\sin^2 \dfrac{1}{2}θ##

Also from ##\sin 2θ=2\sin θ \cos θ##, We shall have
##\sin θ = 2 \sin \dfrac{1}{2}θ \cos \dfrac{1}{2}θ##

therefore,

##\dfrac{1-\cosθ}{\sin θ}=\dfrac{1-(1-2\sin^2 \dfrac{1}{2}θ)}{\sin θ}=\dfrac{2\sin^2 \dfrac{1}{2}θ}{2 \sin \dfrac{1}{2}θ \cos \dfrac{1}{2}θ}=\dfrac{\sin \dfrac{θ}{2}}{cos \dfrac{θ}{2}}=\tan \dfrac{θ}{2}##
 
Last edited:
pasmith said:
I would start from <br /> \begin{split}<br /> \cos \theta &amp;= 1 - 2\sin^2(\theta/2) \\<br /> \sin \theta &amp;= 2\cos(\theta/2)\sin(\theta/2) \end{split} and substitute these into <br /> \csc\theta - \cot\theta = \frac{1 - \cos \theta}{\sin \theta}.
Great idea !
 
From my university notes; i just noted that we could also use Euler approach and binomal formula for ##\cos 2θ## and ##\sin2θ## ; i.e

##\cos 2θ+ i \sin 2∅= (\cos θ+ i \sin ∅)^2=\cos^2θ+ _2C_1⋅i\cos θ\sinθ+ _2C_2⋅i^2\sin^2 θ##

where;

##\cos 2θ=\cos^2θ+_2C_2⋅i^2\sin^2 θ= \cos^2θ-\sin^2θ## and

##i\sin 2θ=_2C_1⋅i\cos θ\sinθ##

##⇒\sin 2θ=2\sin θ\cos θ##

Bingo!
 
Last edited:
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top