MHB Prove trig identity (cot x -1)/(cot x +1)=(1-sin 2x)/(cos 2x)

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Identity Trig
Click For Summary
The discussion focuses on proving the trigonometric identity (cot x - 1)/(cot x + 1) = (1 - sin 2x)/(cos 2x). Participants work through the algebraic manipulation of the left side, simplifying it to match the right side. A correction is noted regarding the numerator, which should include sin^2(x) instead of just cos^2(x). After adjustments, the identity is confirmed as valid. The final expression shows both sides of the equation are equal, successfully proving the identity.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\begin{align*}
\frac{\cot {x}-1}{\cot{x}+1}&=\frac{1-\sin 2x}{\cos 2x}\\
\frac{\cos {x}-\sin x}{\cos{x}+\sin x}
\frac{\cos x-\sin x}{\cos x-\sin x}&= \\
\frac{\cos^2x-2\sin x\cos x+\cos^2 x}{\cos^2 x-\sin^2 x}
\end{align*}$

so far..
 
Mathematics news on Phys.org
karush said:
$\begin{align*}
\frac{\cot {x}-1}{\cot{x}+1}&=\frac{1-\sin 2x}{\cos 2x}\\
\frac{\cos {x}-\sin x}{\cos{x}+\sin x}
\frac{\cos x-\sin x}{\cos x-\sin x}&= \\
\frac{\cos^2x-2\sin x\cos x+\cos^2 x}{\cos^2 x-\sin^2 x}
\end{align*}$

so far..
Check your numerator. It should be [math]cos^2(x) - 2~sin(x)~cos(x) + sin^2(x)[/math].

Otherwise it's good. :)

-Dan
 
$\begin{align*}
\frac{\cot {x}-1}{\cot{x}+1}&=\frac{1-\sin 2x}{\cos 2x}\\
\frac{\cos {x}-\sin x}{\cos{x}+\sin x}
\frac{\cos x-\sin x}{\cos x-\sin x}&= \\
\frac{\cos^2x-2\sin x\cos x+\sin^2 x}
{\displaystyle cos^2x- sin^2x}=\\
\frac{1-\sin 2x}{\cos 2x}
\end{align*}$

hopefully
 
Yup, you got it. (Yes)

-Dan
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K