Prove trig identity (cot x -1)/(cot x +1)=(1-sin 2x)/(cos 2x)

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Identity Trig
Click For Summary
SUMMARY

The forum discussion focuses on proving the trigonometric identity \((\cot x - 1)/(\cot x + 1) = (1 - \sin 2x)/\cos 2x\). Participants analyze the transformation of the left-hand side into the right-hand side using trigonometric identities. Key steps include simplifying the expression to \((\cos x - \sin x)/(\cos x + \sin x)\) and verifying the numerator as \(\cos^2 x - 2\sin x \cos x + \sin^2 x\). The discussion concludes with confirmation that the identity holds true.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with cotangent and sine functions
  • Knowledge of algebraic manipulation of fractions
  • Ability to work with double angle formulas, specifically \(\sin 2x\) and \(\cos 2x\)
NEXT STEPS
  • Study the derivation of double angle formulas for sine and cosine
  • Practice proving other trigonometric identities using algebraic methods
  • Explore the applications of cotangent in solving trigonometric equations
  • Learn about the graphical representation of trigonometric functions and their identities
USEFUL FOR

Students of mathematics, educators teaching trigonometry, and anyone interested in deepening their understanding of trigonometric identities and their proofs.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\begin{align*}
\frac{\cot {x}-1}{\cot{x}+1}&=\frac{1-\sin 2x}{\cos 2x}\\
\frac{\cos {x}-\sin x}{\cos{x}+\sin x}
\frac{\cos x-\sin x}{\cos x-\sin x}&= \\
\frac{\cos^2x-2\sin x\cos x+\cos^2 x}{\cos^2 x-\sin^2 x}
\end{align*}$

so far..
 
Mathematics news on Phys.org
karush said:
$\begin{align*}
\frac{\cot {x}-1}{\cot{x}+1}&=\frac{1-\sin 2x}{\cos 2x}\\
\frac{\cos {x}-\sin x}{\cos{x}+\sin x}
\frac{\cos x-\sin x}{\cos x-\sin x}&= \\
\frac{\cos^2x-2\sin x\cos x+\cos^2 x}{\cos^2 x-\sin^2 x}
\end{align*}$

so far..
Check your numerator. It should be [math]cos^2(x) - 2~sin(x)~cos(x) + sin^2(x)[/math].

Otherwise it's good. :)

-Dan
 
$\begin{align*}
\frac{\cot {x}-1}{\cot{x}+1}&=\frac{1-\sin 2x}{\cos 2x}\\
\frac{\cos {x}-\sin x}{\cos{x}+\sin x}
\frac{\cos x-\sin x}{\cos x-\sin x}&= \\
\frac{\cos^2x-2\sin x\cos x+\sin^2 x}
{\displaystyle cos^2x- sin^2x}=\\
\frac{1-\sin 2x}{\cos 2x}
\end{align*}$

hopefully
 
Yup, you got it. (Yes)

-Dan
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K