Prove trig identity (cot x -1)/(cot x +1)=(1-sin 2x)/(cos 2x)

  • MHB
  • Thread starter karush
  • Start date
  • #1
karush
Gold Member
MHB
3,267
4
$\begin{align*}
\frac{\cot {x}-1}{\cot{x}+1}&=\frac{1-\sin 2x}{\cos 2x}\\
\frac{\cos {x}-\sin x}{\cos{x}+\sin x}
\frac{\cos x-\sin x}{\cos x-\sin x}&= \\
\frac{\cos^2x-2\sin x\cos x+\cos^2 x}{\cos^2 x-\sin^2 x}
\end{align*}$

so far..
 

Answers and Replies

  • #2
topsquark
Science Advisor
Insights Author
Gold Member
MHB
1,837
804
$\begin{align*}
\frac{\cot {x}-1}{\cot{x}+1}&=\frac{1-\sin 2x}{\cos 2x}\\
\frac{\cos {x}-\sin x}{\cos{x}+\sin x}
\frac{\cos x-\sin x}{\cos x-\sin x}&= \\
\frac{\cos^2x-2\sin x\cos x+\cos^2 x}{\cos^2 x-\sin^2 x}
\end{align*}$

so far..
Check your numerator. It should be \(\displaystyle cos^2(x) - 2~sin(x)~cos(x) + sin^2(x)\).

Otherwise it's good. :)

-Dan
 
  • #3
karush
Gold Member
MHB
3,267
4
$\begin{align*}
\frac{\cot {x}-1}{\cot{x}+1}&=\frac{1-\sin 2x}{\cos 2x}\\
\frac{\cos {x}-\sin x}{\cos{x}+\sin x}
\frac{\cos x-\sin x}{\cos x-\sin x}&= \\
\frac{\cos^2x-2\sin x\cos x+\sin^2 x}
{\displaystyle cos^2x- sin^2x}=\\
\frac{1-\sin 2x}{\cos 2x}
\end{align*}$

hopefully
 
  • #4
topsquark
Science Advisor
Insights Author
Gold Member
MHB
1,837
804
Yup, you got it. (Yes)

-Dan
 

Suggested for: Prove trig identity (cot x -1)/(cot x +1)=(1-sin 2x)/(cos 2x)

Replies
4
Views
395
  • Last Post
Replies
6
Views
562
MHB Sin(1/x)
  • Last Post
Replies
1
Views
825
Replies
19
Views
528
Replies
11
Views
784
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
8
Views
539
Replies
2
Views
739
Replies
3
Views
2K
  • Last Post
Replies
18
Views
1K
Top