MHB Prove Trigonometric Equality: $tan 1^o+tan 5^o+tan 9^o = tan 177^o-45$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Trigonometric
Click For Summary
The discussion centers on proving the trigonometric equality \( \tan 1^\circ + \tan 5^\circ + \tan 9^\circ = \tan 177^\circ - 45 \). It is established that for angles of the form \( \theta = (4k+1)^\circ \) where \( 0 \leq k \leq 44 \), the equation \( \tan(45\theta) = 1 \) holds true. The formula for \( \tan(n\theta) \) is utilized to derive a polynomial equation whose roots sum to 45. Consequently, it is concluded that the sum of the tangents of the specified angles equals 45. This confirms the trigonometric equality as stated.
Albert1
Messages
1,221
Reaction score
0
prove:

$tan 1^o+tan 5^o+tan 9^o +---------+tan 177^o=45$
 
Mathematics news on Phys.org
Re: trigonometric equality

Outline solution:
[sp]For $0\leqslant k\leqslant 44$, the angles $\theta = (4k+1)^\circ$ satisfy $\tan(45\theta) = 1.$

The formula for $\tan(n\theta)$ gives $\tan(45\theta) = \dfrac{{45\choose1}t - {45\choose3}t^3 + \ldots -{45\choose43}t^{43} + t^{45}}{1 - {45\choose2}t^2 - \ldots + {45\choose44}t^{44}} = \dfrac{45t -\ldots + t^{45}}{1-\ldots + 45t^{44}},$ where $t = \tan\theta.$ So the equation $\tan(45\theta) = 1$ (for $\theta$) corresponds to the equation $\dfrac{45t -\ldots + t^{45}}{1-\ldots + 45t^{44}} = 1$ (for $t$), or equivalently $t^{45} - 45t^{44} - \ldots -1=0.$ The sum of the roots of that equation is $45.$ Therefore $$\sum_{k=0}^{44}\tan(4k+1)^\circ = 45.$$[/sp]
 
Last edited:
Re: trigonometric equality

Opalg said:
Outline solution:
[sp]For $0\leqslant k\leqslant 44$, the angles $\theta = (4k+1)^\circ$ satisfy $\tan(45\theta) = 1.$

The formula for $\tan(n\theta)$ gives $\tan(45\theta) = \dfrac{{45\choose1}t - {45\choose3}t^3 + \ldots -{45\choose43}t^{43} + t^{45}}{1 - {45\choose2}t^2 - \ldots - {45\choose44}t^{44}} = \dfrac{45t -\ldots + t^{45}}{1-\ldots + 45t^{44}},$ where $t = \tan\theta.$ So the equation $\tan(45\theta) = 1$ (for $\theta$) corresponds to the equation $\dfrac{45t -\ldots + t^{45}}{1-\ldots + 45t^{44}} = 1$ (for $t$), or equivalently $t^{45} - 45t^{44} - \ldots -1=0.$ The sum of the roots of that equation is $45.$ Therefore $$\sum_{k=0}^{44}\tan(4k+1)^\circ = 45.$$[/sp]
perfect (Yes)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K