MHB Prove Trigonometric Equality: $tan 1^o+tan 5^o+tan 9^o = tan 177^o-45$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Trigonometric
Click For Summary
The discussion centers on proving the trigonometric equality \( \tan 1^\circ + \tan 5^\circ + \tan 9^\circ = \tan 177^\circ - 45 \). It is established that for angles of the form \( \theta = (4k+1)^\circ \) where \( 0 \leq k \leq 44 \), the equation \( \tan(45\theta) = 1 \) holds true. The formula for \( \tan(n\theta) \) is utilized to derive a polynomial equation whose roots sum to 45. Consequently, it is concluded that the sum of the tangents of the specified angles equals 45. This confirms the trigonometric equality as stated.
Albert1
Messages
1,221
Reaction score
0
prove:

$tan 1^o+tan 5^o+tan 9^o +---------+tan 177^o=45$
 
Mathematics news on Phys.org
Re: trigonometric equality

Outline solution:
[sp]For $0\leqslant k\leqslant 44$, the angles $\theta = (4k+1)^\circ$ satisfy $\tan(45\theta) = 1.$

The formula for $\tan(n\theta)$ gives $\tan(45\theta) = \dfrac{{45\choose1}t - {45\choose3}t^3 + \ldots -{45\choose43}t^{43} + t^{45}}{1 - {45\choose2}t^2 - \ldots + {45\choose44}t^{44}} = \dfrac{45t -\ldots + t^{45}}{1-\ldots + 45t^{44}},$ where $t = \tan\theta.$ So the equation $\tan(45\theta) = 1$ (for $\theta$) corresponds to the equation $\dfrac{45t -\ldots + t^{45}}{1-\ldots + 45t^{44}} = 1$ (for $t$), or equivalently $t^{45} - 45t^{44} - \ldots -1=0.$ The sum of the roots of that equation is $45.$ Therefore $$\sum_{k=0}^{44}\tan(4k+1)^\circ = 45.$$[/sp]
 
Last edited:
Re: trigonometric equality

Opalg said:
Outline solution:
[sp]For $0\leqslant k\leqslant 44$, the angles $\theta = (4k+1)^\circ$ satisfy $\tan(45\theta) = 1.$

The formula for $\tan(n\theta)$ gives $\tan(45\theta) = \dfrac{{45\choose1}t - {45\choose3}t^3 + \ldots -{45\choose43}t^{43} + t^{45}}{1 - {45\choose2}t^2 - \ldots - {45\choose44}t^{44}} = \dfrac{45t -\ldots + t^{45}}{1-\ldots + 45t^{44}},$ where $t = \tan\theta.$ So the equation $\tan(45\theta) = 1$ (for $\theta$) corresponds to the equation $\dfrac{45t -\ldots + t^{45}}{1-\ldots + 45t^{44}} = 1$ (for $t$), or equivalently $t^{45} - 45t^{44} - \ldots -1=0.$ The sum of the roots of that equation is $45.$ Therefore $$\sum_{k=0}^{44}\tan(4k+1)^\circ = 45.$$[/sp]
perfect (Yes)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K