- #1
Monoxdifly
MHB
- 284
- 0
Prove that \(\displaystyle \frac{cos2x+cos2y}{sin2x-sin2y}=\frac1{tan(x-y)}\). Can someone provide me some hints? I tried to manipulate the right-hand expression but got back to square one.
Prove that \(\displaystyle \frac{cos2x+cos2y}{sin2x-sin2y}=\frac1{tan(x-y)}\). Can someone provide me some hints? I tried to manipulate the right-hand expression but got back to square one.
Hi Monoxdifly,
You could start with the LHS and the identities:
\begin{align*}
\cos a + \cos b &= 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}\\
\sin a - \sin b &= 2\sin\frac{a-b}{2}\cos\frac{a+b}{2}
\end{align*}