MHB Prove Unique Identity in Ring: Solution Explained

  • Thread starter Thread starter Fantini
  • Start date Start date
  • Tags Tags
    Identity Ring
Click For Summary
In the discussion, the problem involves proving that if a ring R has an element a with a unique right inverse a' such that aa' = 1, then a'a must also equal 1. The initial solution attempts to use the property of inverses but raises concerns about assuming the invertibility of both a and a'. A participant clarifies that to prove the implication ax = 0 leads to x = 0, one cannot simply multiply through the middle by a', but should instead manipulate the equation using the uniqueness of a' as a right inverse. The conversation emphasizes the importance of proper multiplication rules in ring theory to avoid incorrect conclusions about commutativity. The discussion concludes with a focus on correctly applying ring properties to reach the desired proof.
Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Hello everybody. Here's the problem:

$$\text{Let } R \text{ be a ring with identity. Let }a \in R \text{ and suppose that exists an unique } a' \in R \text{ such that }a a' =1. \text{ Prove that } a'a=1.$$

My solution:

Since we have an identity, it has an inverse (itself), which means we can do

$$(a a')^{-1} = 1^{-1} = 1,$$

but $(a a')^{-1} = (a')^{-1} a^{-1} = 1$. From this, we can multiply once through the right by $a$ getting $(a')^{-1} a^{-1} a = 1 a = a$ and from that $(a')^{-1} = a$. Finally, multiplying through the left by $a'$ we get $a' (a')^{-1} = 1 = a' a$.

Am I correct? I am particularly uneasy about stating that $(aa')^{-1} = (a')^{-1} a^{-1}$.
 
Physics news on Phys.org
Fantini said:
Hello everybody. Here's the problem:

$$\text{Let } R \text{ be a ring with identity. Let }a \in R \text{ and suppose that exists an unique } a' \in R \text{ such that }a a' =1. \text{ Prove that } a'a=1.$$

My solution:

Since we have an identity, it has an inverse (itself), which means we can do

$$(a a')^{-1} = 1^{-1} = 1,$$

but $\color{red}{(a a')^{-1} = (a')^{-1} a^{-1}} = 1$. From this, we can multiply once through the right by $a$ getting $(a')^{-1} a^{-1} a = 1 a = a$ and from that $(a')^{-1} = a$. Finally, multiplying through the left by $a'$ we get $a' (a')^{-1} = 1 = a' a$.
Am I correct? I am particularly uneasy about stating that $(aa')^{-1} = (a')^{-1} a^{-1}$.
The relation coloured red is only true if the elements $a$ and $a'$ are invertible. By applying that relation here, you are essentially assuming what you are trying to prove. So you are quite right to be uneasy about it.

To prove this result, start by using the uniqueness of the right inverse $a'$ to show that $ax=0$ implies $x=0.$ Then use the relation $aa'a=a$ to deduce that $a'a-1=0.$
 
Thank you, Opalg. Clarifying something: to prove that $ax=0$ implies $x=0$ would it suffice to multiply by $a'$ through the middle? This means $a \cdot (a') \cdot x = 1 \cdot x = x = 0$. If this step is correct, the problem is done.
 
no, you can't just "multiply through the middle".

here is what you CAN do:

ax = 0

ax + 1 = 1

ax + aa' = 1

a(x + a') = 1

now use the uniqueness of a' as a right-inverse.
 
You can multiply both sides of an equation on the left, and you can multiply both sides of an equation on the right, but multiplying "through the middle" is not a well-defined concept. To see why not, suppose that $a$ and $b$ are elements in a ring with identity $1$. Then $1a = a1.$ If you could multiply both sides of that equation "in the middle" by $b$ then you would get $1ba = ab1$, so that $ba=ab.$ That would "prove" that every ring is commutative, which certainly is not the case.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 5 ·
Replies
5
Views
923
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
855
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K