Prove y is not a perfect square

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Square
Albert1
Messages
1,221
Reaction score
0
$x\in N$
$y=x^4+2x^3+2x^2+2x+1$
prove:$y$ is not a perfect square
 
Mathematics news on Phys.org
For all $x > 0$, $$(x^2 + x)^2 = x^4 + 2x^3 + x^2 < x^4 + 2x^3 + 2x^2 + 2x + 1 < x^4 + 2x^3 + 3x^2 + 2x + 1 = (x^2 + x + 1)^2$$ As $y$ is sitting in between two consecutive perfect squares for $x \in \Bbb N \setminus \{0\}$, $y$ cannot itself be a perfect square.
 
$y=x^4+2x^3+2x^2+2x+1$
=$x^4+2x^2+1+2x^3+2x$
=$(x^2+1)^2+2x(x^2+1)$
= $(x^2+1)(x^2+2x+1)$
= $(x^2+1)(x+1)^2$
as $x^2+1$ is between $x^2$ and $(x+1)^2$ and not a perfect square and $(x+1)^2$ is so the product is not a perfect square
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K