- #1
schniefen
- 178
- 4
- TL;DR Summary
- Show that the below determinant satisfies the given formula.
##\begin{vmatrix}
1 & 2 & 3 & ... & n \\
2 & 3 & 4 & ... & 1 \\
3 & 4 & 5 & ... & 2 \\
{\vdots}& {\vdots}& {\vdots} & {\vdots} & {\vdots} \\
n & 1 & 2 & ... & n-1 \notag
\end{vmatrix} = (-1)^{\frac{n(n-1)}{2}}\dfrac{n^n+n^{n-1}}{2}##
Consider the 3x3 case.
##\begin{vmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2 \notag
\end{vmatrix}##
What would be the strategy to solve it? One can of course subtract the second row from the third, and the first from the second, which gives
##\begin{vmatrix}
1 & 2 & 3 \\
1 & 1 & -2 \\
1 & -1 & -1 \notag
\end{vmatrix}##
Then expanding along the first column after one has taken the third row and subtracted it from the first and second...yields a somewhat messy algorithm.
Bonus question:
Show that
##\begin{vmatrix}
x & 0 & 0 & 0 & ... & 0& a_0 \\
-1 & x & 0 & 0 & ... & 0& a_1 \\
0 & -1 & x & 0 & ... &0 & a_2 \\
{\vdots}& {\vdots}& {\vdots} & {\vdots} & & {\vdots} & {\vdots} \\
0 & 0 & 0 &0& ... & -1 & a_{n-1}+x \notag
\end{vmatrix} = x^n+a_{n-1}x^{n-1}+...+a_0##
1 & 2 & 3 & ... & n \\
2 & 3 & 4 & ... & 1 \\
3 & 4 & 5 & ... & 2 \\
{\vdots}& {\vdots}& {\vdots} & {\vdots} & {\vdots} \\
n & 1 & 2 & ... & n-1 \notag
\end{vmatrix} = (-1)^{\frac{n(n-1)}{2}}\dfrac{n^n+n^{n-1}}{2}##
Consider the 3x3 case.
##\begin{vmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2 \notag
\end{vmatrix}##
What would be the strategy to solve it? One can of course subtract the second row from the third, and the first from the second, which gives
##\begin{vmatrix}
1 & 2 & 3 \\
1 & 1 & -2 \\
1 & -1 & -1 \notag
\end{vmatrix}##
Then expanding along the first column after one has taken the third row and subtracted it from the first and second...yields a somewhat messy algorithm.
Bonus question:
Show that
##\begin{vmatrix}
x & 0 & 0 & 0 & ... & 0& a_0 \\
-1 & x & 0 & 0 & ... & 0& a_1 \\
0 & -1 & x & 0 & ... &0 & a_2 \\
{\vdots}& {\vdots}& {\vdots} & {\vdots} & & {\vdots} & {\vdots} \\
0 & 0 & 0 &0& ... & -1 & a_{n-1}+x \notag
\end{vmatrix} = x^n+a_{n-1}x^{n-1}+...+a_0##