MHB Proving a Trigonometric equality

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Trigonometric
AI Thread Summary
The discussion revolves around proving a trigonometric equality involving real numbers a, b, and c. The equality states that if the ratios of the sums of cosines and sines to their respective cosines and sines of the sum of angles equal a constant p, then the sum of the cosines of the angle pairs equals p. Participants share various approaches, including a technique involving weighted averages of the ratios to derive the desired equality. Some members express gratitude for insights gained from the discussion, while others clarify and correct mathematical expressions related to the proof. The conversation highlights the complexity of the problem and the collaborative effort to reach a solution.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

I have found this problem quite interesting to me and hence I have spent some time on it but all of my attempts to prove it went down the drain.

I have no choice but posting it here, hoping to gain some insight from the members of the forum on how to prove this problem.

Thanks in advance.

Problem:

Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

I have found this problem quite interesting to me and hence I have spent some time on it but all of my attempts to prove it went down the drain.

I have no choice but posting it here, hoping to gain some insight from the members of the forum on how to prove this problem.

Thanks in advance.

Problem:

Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$

Hello.

But the question is: always is fulfilled?:

\cos(a+b)+\cos(b+c)+\cos(a+c)=p

, or what can there be a solution?.

I have come to a conclusion in favour of the second question.

Regards.
 
anemone said:
Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$\begin{aligned} p &= \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} \\ &= \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}. \end{aligned}$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.
 
Opalg said:
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$ p = \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} = \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}.$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.

Hello.

Yes, but:

cos \ a+cos \ b+cos \ c=p \ cos \ (a+b+c)

sin \ a+sin \ b+sin \ c=p \ sin \ (a+b+c)

p^2 \ cos^2(a+b+c)=cos^2a+cos^2b+cos^2c+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c, (*)

p^2 \ sin^2(a+b+c)=sin^2a+sin^2b+sin^2c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c, (**)

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)We substitute, to see if it can meet that:

\cos(b+c) + \cos(a+c) + \cos(a+b) = p

2p=2 \cos(b+c) +2 \cos(a+c) +2 \cos(a+b)

p^2-2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0

p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}

Could we discard the negative outcome?:confused:

Regards.
 
Opalg said:
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$\begin{aligned} p &= \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} \\ &= \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}. \end{aligned}$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.

Hi Opalg,

I must say a big thank you to you, who has constantly helped me out to understand how to use some nice tricks to solve some challenging mathematics problems and words cannot adequately express my deepest gratitude to you for the remarkable helps that you have shown to me.(Sun)(heart)

Also, even if I'm aware of the technique to use the following trick, it would take me some time to figure out the proper $\lambda$ and $\mu$ to be used!

($\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.)

mente oscura said:
Hello.

p^2 \ cos^2(a+b+c)=cos^2a+cos^2b+cos^2c+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c, (*)

p^2 \ sin^2(a+b+c)=sin^2a+sin^2b+sin^2c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c, (**)

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)

Shouldn't the above be p^2=3+4\sin a \sin b+4\sin a \sin c+4\sin b \sin c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)?:confused:
 
mente oscura said:
Hello.

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)We substitute, to see if it can meet that:

\cos(b+c) + \cos(a+c) + \cos(a+b) = p

2p=2 \cos(b+c) +2 \cos(a+c) +2 \cos(a+b)

p^2-2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0

p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}

Could we discard the negative outcome?:confused:

Regards.
Hello.

I'm sorry. I am wrong in the transcription of any sign. I this correct:

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

By be:

\cos (a+b)= \cos a \cos b-\sin a \sin b

2 \sin a \sin b=2 \cos a \cos b-2 \cos (a+b)

This is similar with \cos (a+c) \ and \ \cos (b+c)

It would be:

p^2=3+4 \cos a \cos b+4 \cos a \cos c+4 \cos b \cos c-2 \cos (a+b)-2 \cos (a+c)-2 \cos (b+c)

p^2=3+4 \cos a \cos b+4 \cos a \cos c+4 \cos b \cos c-2 p

p^2+2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}Regards.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top