Proving a Trigonometric equality

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Trigonometric
Click For Summary

Discussion Overview

The discussion revolves around proving a trigonometric equality involving real numbers \(a\), \(b\), and \(c\). The participants explore the implications of the equality and various approaches to prove it, including algebraic manipulations and trigonometric identities.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the problem and seeks insights on proving the equality: \(\cos(a+b)+\cos(b+c)+\cos(a+c)=p\).
  • Another participant questions whether the equality is always fulfilled or if there could be exceptions.
  • A participant proposes a method using a trick involving ratios to derive expressions for \(p\) and relates them to the cosine terms.
  • Further elaboration on the derived expressions leads to a conclusion that \(\cos(b+c) + \cos(a+c) + \cos(a+b) = p\) under certain manipulations.
  • Another participant introduces algebraic identities involving sums of cosines and sines, suggesting a relationship between \(p\) and these identities.
  • Concerns are raised about the validity of certain steps in the algebraic manipulations, particularly regarding the signs and terms involved.
  • Participants express uncertainty about discarding negative outcomes in the derived quadratic equations related to \(p\).

Areas of Agreement / Disagreement

There is no consensus on the proof of the trigonometric equality. Multiple competing views and methods are presented, with participants questioning and refining each other's approaches without reaching a definitive conclusion.

Contextual Notes

Some participants note potential errors in algebraic manipulations and the need for careful consideration of signs and terms in the derived equations. The discussion highlights the complexity of the problem and the various assumptions made during the reasoning process.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

I have found this problem quite interesting to me and hence I have spent some time on it but all of my attempts to prove it went down the drain.

I have no choice but posting it here, hoping to gain some insight from the members of the forum on how to prove this problem.

Thanks in advance.

Problem:

Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

I have found this problem quite interesting to me and hence I have spent some time on it but all of my attempts to prove it went down the drain.

I have no choice but posting it here, hoping to gain some insight from the members of the forum on how to prove this problem.

Thanks in advance.

Problem:

Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$

Hello.

But the question is: always is fulfilled?:

\cos(a+b)+\cos(b+c)+\cos(a+c)=p

, or what can there be a solution?.

I have come to a conclusion in favour of the second question.

Regards.
 
anemone said:
Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$\begin{aligned} p &= \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} \\ &= \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}. \end{aligned}$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.
 
Opalg said:
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$ p = \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} = \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}.$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.

Hello.

Yes, but:

cos \ a+cos \ b+cos \ c=p \ cos \ (a+b+c)

sin \ a+sin \ b+sin \ c=p \ sin \ (a+b+c)

p^2 \ cos^2(a+b+c)=cos^2a+cos^2b+cos^2c+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c, (*)

p^2 \ sin^2(a+b+c)=sin^2a+sin^2b+sin^2c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c, (**)

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)We substitute, to see if it can meet that:

\cos(b+c) + \cos(a+c) + \cos(a+b) = p

2p=2 \cos(b+c) +2 \cos(a+c) +2 \cos(a+b)

p^2-2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0

p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}

Could we discard the negative outcome?:confused:

Regards.
 
Opalg said:
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$\begin{aligned} p &= \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} \\ &= \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}. \end{aligned}$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.

Hi Opalg,

I must say a big thank you to you, who has constantly helped me out to understand how to use some nice tricks to solve some challenging mathematics problems and words cannot adequately express my deepest gratitude to you for the remarkable helps that you have shown to me.(Sun)(heart)

Also, even if I'm aware of the technique to use the following trick, it would take me some time to figure out the proper $\lambda$ and $\mu$ to be used!

($\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.)

mente oscura said:
Hello.

p^2 \ cos^2(a+b+c)=cos^2a+cos^2b+cos^2c+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c, (*)

p^2 \ sin^2(a+b+c)=sin^2a+sin^2b+sin^2c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c, (**)

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)

Shouldn't the above be p^2=3+4\sin a \sin b+4\sin a \sin c+4\sin b \sin c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)?:confused:
 
mente oscura said:
Hello.

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)We substitute, to see if it can meet that:

\cos(b+c) + \cos(a+c) + \cos(a+b) = p

2p=2 \cos(b+c) +2 \cos(a+c) +2 \cos(a+b)

p^2-2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0

p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}

Could we discard the negative outcome?:confused:

Regards.
Hello.

I'm sorry. I am wrong in the transcription of any sign. I this correct:

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

By be:

\cos (a+b)= \cos a \cos b-\sin a \sin b

2 \sin a \sin b=2 \cos a \cos b-2 \cos (a+b)

This is similar with \cos (a+c) \ and \ \cos (b+c)

It would be:

p^2=3+4 \cos a \cos b+4 \cos a \cos c+4 \cos b \cos c-2 \cos (a+b)-2 \cos (a+c)-2 \cos (b+c)

p^2=3+4 \cos a \cos b+4 \cos a \cos c+4 \cos b \cos c-2 p

p^2+2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}Regards.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K