MHB Proving a Trigonometric equality

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Trigonometric
Click For Summary
The discussion revolves around proving a trigonometric equality involving real numbers a, b, and c. The equality states that if the ratios of the sums of cosines and sines to their respective cosines and sines of the sum of angles equal a constant p, then the sum of the cosines of the angle pairs equals p. Participants share various approaches, including a technique involving weighted averages of the ratios to derive the desired equality. Some members express gratitude for insights gained from the discussion, while others clarify and correct mathematical expressions related to the proof. The conversation highlights the complexity of the problem and the collaborative effort to reach a solution.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

I have found this problem quite interesting to me and hence I have spent some time on it but all of my attempts to prove it went down the drain.

I have no choice but posting it here, hoping to gain some insight from the members of the forum on how to prove this problem.

Thanks in advance.

Problem:

Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

I have found this problem quite interesting to me and hence I have spent some time on it but all of my attempts to prove it went down the drain.

I have no choice but posting it here, hoping to gain some insight from the members of the forum on how to prove this problem.

Thanks in advance.

Problem:

Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$

Hello.

But the question is: always is fulfilled?:

\cos(a+b)+\cos(b+c)+\cos(a+c)=p

, or what can there be a solution?.

I have come to a conclusion in favour of the second question.

Regards.
 
anemone said:
Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$\begin{aligned} p &= \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} \\ &= \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}. \end{aligned}$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.
 
Opalg said:
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$ p = \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} = \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}.$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.

Hello.

Yes, but:

cos \ a+cos \ b+cos \ c=p \ cos \ (a+b+c)

sin \ a+sin \ b+sin \ c=p \ sin \ (a+b+c)

p^2 \ cos^2(a+b+c)=cos^2a+cos^2b+cos^2c+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c, (*)

p^2 \ sin^2(a+b+c)=sin^2a+sin^2b+sin^2c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c, (**)

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)We substitute, to see if it can meet that:

\cos(b+c) + \cos(a+c) + \cos(a+b) = p

2p=2 \cos(b+c) +2 \cos(a+c) +2 \cos(a+b)

p^2-2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0

p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}

Could we discard the negative outcome?:confused:

Regards.
 
Opalg said:
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$\begin{aligned} p &= \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} \\ &= \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}. \end{aligned}$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.

Hi Opalg,

I must say a big thank you to you, who has constantly helped me out to understand how to use some nice tricks to solve some challenging mathematics problems and words cannot adequately express my deepest gratitude to you for the remarkable helps that you have shown to me.(Sun)(heart)

Also, even if I'm aware of the technique to use the following trick, it would take me some time to figure out the proper $\lambda$ and $\mu$ to be used!

($\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.)

mente oscura said:
Hello.

p^2 \ cos^2(a+b+c)=cos^2a+cos^2b+cos^2c+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c, (*)

p^2 \ sin^2(a+b+c)=sin^2a+sin^2b+sin^2c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c, (**)

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)

Shouldn't the above be p^2=3+4\sin a \sin b+4\sin a \sin c+4\sin b \sin c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)?:confused:
 
mente oscura said:
Hello.

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)We substitute, to see if it can meet that:

\cos(b+c) + \cos(a+c) + \cos(a+b) = p

2p=2 \cos(b+c) +2 \cos(a+c) +2 \cos(a+b)

p^2-2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0

p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}

Could we discard the negative outcome?:confused:

Regards.
Hello.

I'm sorry. I am wrong in the transcription of any sign. I this correct:

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

By be:

\cos (a+b)= \cos a \cos b-\sin a \sin b

2 \sin a \sin b=2 \cos a \cos b-2 \cos (a+b)

This is similar with \cos (a+c) \ and \ \cos (b+c)

It would be:

p^2=3+4 \cos a \cos b+4 \cos a \cos c+4 \cos b \cos c-2 \cos (a+b)-2 \cos (a+c)-2 \cos (b+c)

p^2=3+4 \cos a \cos b+4 \cos a \cos c+4 \cos b \cos c-2 p

p^2+2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}Regards.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K