MHB Proving a Trigonometric equality

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Trigonometric
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

I have found this problem quite interesting to me and hence I have spent some time on it but all of my attempts to prove it went down the drain.

I have no choice but posting it here, hoping to gain some insight from the members of the forum on how to prove this problem.

Thanks in advance.

Problem:

Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

I have found this problem quite interesting to me and hence I have spent some time on it but all of my attempts to prove it went down the drain.

I have no choice but posting it here, hoping to gain some insight from the members of the forum on how to prove this problem.

Thanks in advance.

Problem:

Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$

Hello.

But the question is: always is fulfilled?:

\cos(a+b)+\cos(b+c)+\cos(a+c)=p

, or what can there be a solution?.

I have come to a conclusion in favour of the second question.

Regards.
 
anemone said:
Suppose that real numbers $a, b, c$ satisfy

$\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$

Prove that $\cos(a+b)+\cos(b+c)+\cos(a+c)=p$
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$\begin{aligned} p &= \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} \\ &= \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}. \end{aligned}$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.
 
Opalg said:
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$ p = \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} = \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}.$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.

Hello.

Yes, but:

cos \ a+cos \ b+cos \ c=p \ cos \ (a+b+c)

sin \ a+sin \ b+sin \ c=p \ sin \ (a+b+c)

p^2 \ cos^2(a+b+c)=cos^2a+cos^2b+cos^2c+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c, (*)

p^2 \ sin^2(a+b+c)=sin^2a+sin^2b+sin^2c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c, (**)

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)We substitute, to see if it can meet that:

\cos(b+c) + \cos(a+c) + \cos(a+b) = p

2p=2 \cos(b+c) +2 \cos(a+c) +2 \cos(a+b)

p^2-2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0

p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}

Could we discard the negative outcome?:confused:

Regards.
 
Opalg said:
I will use a trick that I learned from this forum: if $\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.

Given $\dfrac{\cos a+\cos b+\cos c}{\cos(a+b+c)}=\dfrac{\sin a+\sin b+\sin c}{\sin(a+b+c)}=p$, apply that trick with $\lambda = \cos c$ and $\mu = \sin c$, to get $$p = \frac{\cos c(\cos a+\cos b+\cos c) + \sin c(\sin a+\sin b+\sin c)}{\cos c\cos(a+b+c) + \sin c\sin(a+b+c)} = \frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)}.$$ Similarly, using $\lambda = \sin c$ and $\mu = -\cos c$, you get $$p = \frac{\sin c(\cos a+\cos b+\cos c) - \cos c(\sin a+\sin b+\sin c)}{\sin c\cos(a+b+c) - \cos c\sin(a+b+c)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)}.$$ Thus $$\frac{\cos(c-a) + \cos(c-b) + 1}{\cos(a+b)} = \frac{\sin(c-a) + \sin(c-b)}{-\sin(a+b)} = p.$$ Now apply the trick again, to that expression, this time with $\lambda = \cos(a+b)$ and $\mu = -\sin(a+b)$: $$\begin{aligned} p &= \frac{\cos(a+b)\bigl(\cos(c-a) + \cos(c-b) + 1\bigr) - \sin(a+b)\bigl(\sin(c-a) + \sin(c-b)\bigr)}{\cos^2(a+b) + \sin^2(a+b)} \\ &= \frac{\cos(b+c) + \cos(a+c) + \cos(a+b)}{1}. \end{aligned}$$ Therefore $\cos(b+c) + \cos(a+c) + \cos(a+b) = p$.

Hi Opalg,

I must say a big thank you to you, who has constantly helped me out to understand how to use some nice tricks to solve some challenging mathematics problems and words cannot adequately express my deepest gratitude to you for the remarkable helps that you have shown to me.(Sun)(heart)

Also, even if I'm aware of the technique to use the following trick, it would take me some time to figure out the proper $\lambda$ and $\mu$ to be used!

($\dfrac xy = \dfrac zw = p$ then also $\dfrac{\lambda x + \mu z}{\lambda y + \mu w} = p$ for any choice of $\lambda$ and $\mu$.)

mente oscura said:
Hello.

p^2 \ cos^2(a+b+c)=cos^2a+cos^2b+cos^2c+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c, (*)

p^2 \ sin^2(a+b+c)=sin^2a+sin^2b+sin^2c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c, (**)

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)

Shouldn't the above be p^2=3+4\sin a \sin b+4\sin a \sin c+4\sin b \sin c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)?:confused:
 
mente oscura said:
Hello.

I'm add (*) and (**)

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

p^2=3+4\cos a \cos b+4\cos a \cos c+4\cos b \cos c+2\cos (a+b)+2\cos (a+c)+2\cos (b+c)We substitute, to see if it can meet that:

\cos(b+c) + \cos(a+c) + \cos(a+b) = p

2p=2 \cos(b+c) +2 \cos(a+c) +2 \cos(a+b)

p^2-2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0

p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}

Could we discard the negative outcome?:confused:

Regards.
Hello.

I'm sorry. I am wrong in the transcription of any sign. I this correct:

p^2=3+2cos a \ cos b+2cos a \ cos c+2cos b \ cos c+2sin a \ sin b+2sin a \ sin c+2sin b \ sin c

By be:

\cos (a+b)= \cos a \cos b-\sin a \sin b

2 \sin a \sin b=2 \cos a \cos b-2 \cos (a+b)

This is similar with \cos (a+c) \ and \ \cos (b+c)

It would be:

p^2=3+4 \cos a \cos b+4 \cos a \cos c+4 \cos b \cos c-2 \cos (a+b)-2 \cos (a+c)-2 \cos (b+c)

p^2=3+4 \cos a \cos b+4 \cos a \cos c+4 \cos b \cos c-2 p

p^2+2p-4(\cos a \cos b+\cos a \cos c+\cos b \cos c)-3=0p=-1 \pm \sqrt{1+\cos a \cos b+\cos a \cos c+\cos b \cos c}Regards.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top