MHB Proving conditional expectation

Click For Summary
The discussion revolves around proving that if E(U|X) = E(U) = 0 for random variables U and X, then it follows that E(U^2|X) = E(U^2). A participant challenges this assumption by providing a counterexample where U conditioned on X has a non-zero variance. The conversation then shifts to the context of homoskedasticity in simple linear regression, questioning how the conclusion σ² = E(U²|X) implies σ² = E(U²) is reached. The clarification provided emphasizes that this conclusion stems from the homoskedasticity assumption. The thread highlights the complexities involved in understanding conditional expectations and their implications in statistical models.
Usagi
Messages
38
Reaction score
0
Hi guys, assume we have an equality involving 2 random variables U and X such that E(U|X) = E(U)=0, now I was told that this assumption implies that E(U^2|X) = E(U^2). However I'm not sure on how to prove this, if anyone could show me that'd be great!
 
Mathematics news on Phys.org
Usagi said:
Hi guys, assume we have an equality involving 2 random variables U and X such that E(U|X) = E(U)=0, now I was told that this assumption implies that E(U^2|X) = E(U^2). However I'm not sure on how to prove this, if anyone could show me that'd be great!

Not sure this is true. Suppose \(U|(X=x) \sim N(0,x^2)\), and \(X\) has whatever distribution we like.

Then \(E(U|X=x)=0\) and \( \displaystyle E(U)=\int \int u f_{U|X=x}(u) f_X(x)\;dudx =\int E(U|X=x) f_X(x) \; dx=0\).

Now \(E(U^2|X=x)={\text{Var}}(U|X=x)=x^2\). While \( \displaystyle E(U^2)=\int E(U^2|X=x) f_X(x) \; dx= \int x^2 f_X(x) \; dx\).

Or have I misunderstood something?

CB
 
Hi CB,

Actually the problem arose from the following passage regarding the homoskedasticity assumption for simple linear regression:

http://img444.imageshack.us/img444/6892/asdfsdfc.jpg
I do not understand how they came to the conclusion that \sigma^2 = E(u^2|x) \implies \sigma^2 = E(u^2)

Thanks for your help!
 
Usagi said:
Hi CB,

Actually the problem arose from the following passage regarding the homoskedasticity assumption for simple linear regression:

http://img444.imageshack.us/img444/6892/asdfsdfc.jpg
I do not understand how they came to the conclusion that \sigma^2 = E(u^2|x) \implies \sigma^2 = E(u^2)

Thanks for your help!

It is the assumed homoskedasticity (that is what it means).

CB
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
0
Views
810
  • · Replies 4 ·
Replies
4
Views
557
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K