Proving CosX CosY CosZ + SinX SinY SinZ ≤ 1

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the inequality $\cos X \cos Y \cos Z + \sin X \sin Y \sin Z \leq 1$ for angles $X, Y, Z$ within the interval $(0, \frac{\pi}{2})$. Participants suggest utilizing the Cauchy–Schwarz inequality to derive the proof, demonstrating that the left-hand side can be bounded by $\sqrt{\cos^2 X \cos^2 Y + \sin^2 X \sin^2 Y}$. The conclusion confirms that the inequality holds true, with a suggestion to consider the interval as $[0, \frac{\pi}{2}]$ for completeness.

PREREQUISITES
  • Cauchy–Schwarz inequality in mathematics
  • Trigonometric identities and properties
  • Understanding of inequalities in real analysis
  • Basic knowledge of calculus and limits
NEXT STEPS
  • Study the applications of the Cauchy–Schwarz inequality in various mathematical proofs
  • Explore trigonometric identities and their proofs
  • Learn about inequalities in real analysis, focusing on common techniques
  • Investigate the implications of boundary conditions in mathematical inequalities
USEFUL FOR

Mathematicians, students studying real analysis, educators teaching trigonometry, and anyone interested in advanced mathematical proofs and inequalities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If X, Y and Z are in the interval $ (0, \frac{\pi}{2})$, prove that $cosX cosY cosZ+sinXsinYsinZ \leq 1$

Since I see no relevance between X, Y and Z, (but I know I can let X>Y>Z), I don't know how to begin and to be completely candid, I have no clue at all how to do it. (Sweating)

Any hint would be very much welcome.

Thanks.
 
Mathematics news on Phys.org
anemone said:
If X, Y and Z are in the interval $ (0, \frac{\pi}{2})$, prove that $\cos X \cos Y \cos Z+\sin X\sin Y\sin Z \leq 1$
One way would be to start with the Cauchy–Schwarz inequality: $$(\cos X \cos Y) \cos Z+(\sin X\sin Y)\sin Z \leqslant \sqrt{\cos^2X\cos^2Y + \sin^2X\sin^2Y}\sqrt{\cos^2Z+\sin^2Z}.$$ See if you can take it from there.
 
Oh...the Cauchy–Schwarz inequality!
OK. Let's see if I'm doing this right.

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {cos^2Xcos^2Y+sin^2Xsin^2Y} \sqrt {cos^2Z+sin^2Z}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {cos^2Xcos^2Y+sin^2Xsin^2Y} \sqrt {1}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {(cosXcosY)^2+(sinXsinY)^2} \sqrt {1}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {\frac{1}{2}[cos(X+Y)+cos(X-Y)])^2+(\frac{1}{2}[cos(X+Y)-cos(X-Y)])^2} $

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {\frac{1}{4}(cos^2(X+Y)+cos^2(X-Y)+2cos(X+Y)cos(X-Y)+cos^2(X+Y)+cos^2(X-Y)-2cos(X+Y)cos(X-Y)}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {\frac{1}{4}(2(cos^2(X+Y)+cos^2(X-Y))}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {\frac{1}{2}(cos^2(X+Y)+cos^2(X-Y))}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {\frac{1}{2}(\frac{cos2(X+Y)+1}{2}+\frac{cos2(X-Y)+1}{2})}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {\frac{1}{2}(\frac{cos2(X+Y)+cos2(X-Y)}{2}+1)}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {\frac{1}{2}(\frac{2cos2Xcos2Y}{2}+1)}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {\frac{1}{2}(cos2Xcos2Y+1)}$

But we know that $-1 \leq cos2X\leq1$ and $-1 \leq cos2Y\leq1$ for $0 \leq2X\leq\pi$, so we can state that

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {\frac{1}{2}((1)(1)+1)}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {\frac{1}{2}(2)}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq 1$ (Q.E.D.)

I cheat a bit because we're told that X, Y and Z are in the interval $ (0, \frac{\pi}{2})$ but I take it as they are lie in the interval $ [0, \frac{\pi}{2}]$...
 
I had thought of an easier way.

anemone said:
Oh...the Cauchy–Schwarz inequality!
OK. Let's see if I'm doing this right.

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {cos^2Xcos^2Y+sin^2Xsin^2Y} \sqrt {cos^2Z+sin^2Z}$

$(cosXcosY)cosZ+(sinXsinY)sinZ\leq \sqrt {cos^2Xcos^2Y+sin^2Xsin^2Y}$

Using the Cauchy–Schwarz inequality again,

$\cos^2X\cos^2Y+\sin^2X\sin^2Y\leq\sqrt{\cos^4X+ \sin^4X}\sqrt{\cos^4Y+\sin^4Y}$

$\cos^4X<\cos^2X$

$\sin^4X<\sin^2Y$

Adding, $\cos^4X+\sin^4X<1$

Similarly, $\cos^4Y+\sin^4Y<1$

So, $\cos^2X\cos^2Y+\sin^2X\sin^2Y\leq\sqrt{\cos^4X+ \sin^4X}\sqrt{\cos^4Y+\sin^4Y}<1$

So, $\sqrt{\cos^2X\cos^2Y+\sin^2X\sin^2Y}<1$
 
Last edited:
Oh..., one need to apply the Cauchy–Schwarz inequality twice to get the problem solved. Thanks, Alexmahone.

I think I've to polish up on the concept of Cauchy–Schwarz inequality.

BTW, do you think the condition that the problem set should read $ (0, \frac{\pi}{2}]$ rather than $ (0, \frac{\pi}{2})$ in order to have $cosX cosY cosZ+sinXsinYsinZ \leq 1$?
 
anemone said:
BTW, do you think the condition that the problem set should read $ (0, \frac{\pi}{2}]$ rather than $ (0, \frac{\pi}{2})$ in order to have $cosX cosY cosZ+sinXsinYsinZ \leq 1$?

It should probably read $\left[0,\ \frac{\pi}{2}\right]$.
 
Actually, there is a much easier way:

$\cos X\cos Y\cos Z<\cos X\cos Y$

$\sin X\sin Y\sin Z<\sin X\sin Y$

Adding,

$\cos X\cos Y\cos Z+\sin X\sin Y\sin Z<\cos X\cos Y+\sin X\sin Y=\cos(X-Y)<1$
 
Alexmahone said:
Actually, there is a much easier way:

$\cos X\cos Y\cos Z<\cos X\cos Y$

$\sin X\sin Y\sin Z<\sin X\sin Y$

Adding,

$\cos X\cos Y\cos Z+\sin X\sin Y\sin Z<\cos X\cos Y+\sin X\sin Y=\cos(X-Y)<1$

Yes. That is a cool and intellectual approach. (Smile)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 9 ·
Replies
9
Views
10K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
2K
Replies
2
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
9K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K