MHB Proving $\delta(s,u)+w(u,v)=\delta(s,v)$ in a Shortest Path

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Path
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! (Blush)

I am looking at the proof of the following sentence:

Let $s \to u \to v$ a shortest path from the vertex $s$ to the vertex $v$.
Suppose that we relax at some time the edge $(u,v)$.If,before the call of Relaxation(u,v,w),it stands that $d=\delta(s,u)$,then after the call of Relaxation(u,v,w),it stands that $d[v]=\delta(s,v)$.

The algorithm of the function Relaxation(u,v,w) is the following:

Code:
Relaxation(u,v,w)
 if d[v]>d[u]+w(u,v)
    d[v]<-d[u]+w(u,v)
    p[v]<-u

This is the proof (Wait) :

If $d$ gets at some time the value $\delta(s,u)$,$d$ remains unchanged.After the relaxation,we have:

$$d[v] \leq d+w(u,v) \\ \ \ \ = \delta(s,u)+w(u,v) \\ \ \ \ = \delta(s,v)$$

So,we have: $d[v] \leq \delta(s,v)$.

However, it is known that $d[v] \geq \delta(s,v)$.

So,we conclude that $d[v]=\delta(s,v)$.

Could you explain me why $\delta(s,u)+w(u,v)=\delta(s,v)$ ? (Thinking)
 
Physics news on Phys.org
Hi! (Smirk)

evinda said:
Could you explain me why $\delta(s,u)+w(u,v)=\delta(s,v)$ ? (Thinking)

Let $s \to u \to v$ a shortest path from the vertex $s$ to the vertex $v$.

Since $s \to u \to v$ is a shortest path, it follows that $\delta(s,u)+w(u,v)=\delta(s,v)$.
 
I like Serena said:
Hi! (Smirk)Since $s \to u \to v$ is a shortest path, it follows that $\delta(s,u)+w(u,v)=\delta(s,v)$.

I got it now! Thank you very much! (Smirk)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
11
Views
3K
Replies
6
Views
2K
Replies
1
Views
2K
Replies
6
Views
2K
Replies
2
Views
2K
Replies
25
Views
4K
Back
Top