Proving $f(x_k+εp)<f(x_k)$ with Taylor Series

Click For Summary

Discussion Overview

The discussion revolves around proving that if the directional derivative of a function $f$ at a point $x_k$ in the direction of a vector $p$ is negative, then the function value at a perturbed point $x_k + \epsilon p$ is less than the function value at $x_k$ for sufficiently small $\epsilon > 0$. The approach involves using Taylor series expansion to analyze the behavior of the function around the point $x_k$.

Discussion Character

  • Technical explanation, Mathematical reasoning, Debate/contested

Main Points Raised

  • One participant suggests expanding $f(x_k + \epsilon p)$ using Taylor series and analyzing the difference $f(x_k + \epsilon p) - f(x_k)$.
  • Another participant reiterates the Taylor series expansion and introduces the notation for the first-order term and remainder, indicating that the remainder is smaller than the first-order term for small $\epsilon$.
  • It is proposed that if $b = p^T \nabla f(x_k) < 0$, then the expression can be simplified to show that $f(x_k + \epsilon p) < f(x_k)$.
  • A question arises regarding the condition $|R| < |εb|$, with a later response confirming that this is due to the higher powers of $\epsilon$ in the remainder terms compared to the linear term.

Areas of Agreement / Disagreement

Participants generally agree on the use of Taylor series for the proof and the implications of the negative directional derivative, but there is some uncertainty regarding the justification of the inequality involving the remainder terms.

Contextual Notes

The discussion includes assumptions about the behavior of the Taylor series and the conditions under which the inequalities hold, particularly concerning the smallness of $\epsilon$ and the convergence of the series.

i_a_n
Messages
78
Reaction score
0
Prove that if $p^T▽f(x_k)<0$, then $f(x_k+εp)<f(x_k)$ for $ε>0$ sufficiently small.

I think we can expand $f(x_k+εp)$ in a Taylor series about the point $x_k$ and look at $f(x_k+εp)-f(x_k)$, but what's then? (Taylor series: $f(x_0+p)=f(x_0)+p^T▽f(x_0)+(1/2)p^T▽^2f(x_0)p+...$
=> here is what's $p$)
 
Last edited:
Physics news on Phys.org
can anyone help me?
 
We ask that you do not bump a topic unless you have something to add, such as further information or other things you have tried to work the problem.

With most people busy with family and other things during the weekends, you will probably get responses beginning tomorrow, but I make no promises you understand. I am just trying to explain that our helpers are not online as much during the weekends.

No topics get ignored here, it just takes the right person (i.e. who knows how to help) to come along when they have time to be online.
 
ianchenmu said:
Prove that if $p^T▽f(x_k)<0$, then $f(x_k+εp)<f(x_k)$ for $ε>0$ sufficiently small.

I think we can expand $f(x_k+εp)$ in a Taylor series about the point $x_k$ and look at $f(x_k+εp)-f(x_k)$, but what's then? (Taylor series: $f(x_0+p)=f(x_0)+p^T▽f(x_0)+(1/2)p^T▽^2f(x_0)p+...$
=> here is what's $p$)

You have:
$f(x_k+εp)=f(x_k)+(εp)^T▽f(x_0)+(1/2)(εp)^T▽^2f(x_k)(εp)+... \qquad (1)$​

Let $b = p^T▽f(x_k)$, so $b < 0$.
Let $R=(1/2)(εp)^T▽^2f(x_k)(εp)+...$.

Then (1) becomes:
$f(x_k+εp)=f(x_k) + εb + R \qquad (2)$​

The absolute value of the remainder terms R is less than the absolute value of the first order term for $ε>0$ sufficiently small:
$|R| < |εb|$

$R < -εb$

$εb + R < 0 \qquad (3)$​

Combining (2) and (3):
$f(x_k+εp)=f(x_k) + εb + R < f(x_k)$ $\qquad \blacksquare$​
Btw, before I did not understand what p was, nor how $\nabla$ was intended.
Seeing no effort either I ignored this thread.
Apparently you added an extra explanation later, so here you go. :)
 
ILikeSerena said:
You have:
$f(x_k+εp)=f(x_k)+(εp)^T▽f(x_0)+(1/2)(εp)^T▽^2f(x_k)(εp)+... \qquad (1)$​

Let $b = p^T▽f(x_k)$, so $b < 0$.
Let $R=(1/2)(εp)^T▽^2f(x_k)(εp)+...$.

Then (1) becomes:
$f(x_k+εp)=f(x_k) + εb + R \qquad (2)$​

The absolute value of the remainder terms R is less than the absolute value of the first order term for $ε>0$ sufficiently small:
$|R| < |εb|$

$R < -εb$

$εb + R < 0 \qquad (3)$​

Combining (2) and (3):
$f(x_k+εp)=f(x_k) + εb + R < f(x_k)$ $\qquad \blacksquare$​
Btw, before I did not understand what p was, nor how $\nabla$ was intended.
Seeing no effort either I ignored this thread.
Apparently you added an extra explanation later, so here you go. :)

why $|R| < |εb|$? Is that simply because $ε>0$ is sufficiently small?
 
ianchenmu said:
why $|R| < |εb|$? Is that simply because $ε>0$ is sufficiently small?

Yes.
The remainder terms consist of higher powers in ε than the εb-term.
As long as the series converges the εb-term (which is non-zero) will be larger than R if ε is small enough.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K