Proving $f(x_k+εp)<f(x_k)$ with Taylor Series

Click For Summary
SUMMARY

The discussion centers on proving that if \( p^T \nabla f(x_k) < 0 \), then \( f(x_k + \epsilon p) < f(x_k) \) for sufficiently small \( \epsilon > 0 \). The proof utilizes the Taylor series expansion of \( f(x_k + \epsilon p) \), leading to the conclusion that the first-order term \( \epsilon b \) dominates the remainder term \( R \) when \( \epsilon \) is small. Thus, it is established that \( f(x_k + \epsilon p) < f(x_k) \) under the given conditions.

PREREQUISITES
  • Understanding of Taylor series expansion
  • Knowledge of gradient notation \( \nabla f \)
  • Familiarity with the concept of limits and convergence in calculus
  • Basic proficiency in mathematical proofs and inequalities
NEXT STEPS
  • Study the properties of Taylor series and their applications in optimization
  • Learn about the implications of the gradient \( \nabla f \) in multivariable calculus
  • Explore the concept of remainder terms in Taylor series and their significance
  • Investigate further into conditions for local minima and maxima in optimization problems
USEFUL FOR

Mathematicians, students of calculus, and professionals in optimization who are interested in understanding the behavior of functions near critical points and the application of Taylor series in proofs.

i_a_n
Messages
78
Reaction score
0
Prove that if $p^T▽f(x_k)<0$, then $f(x_k+εp)<f(x_k)$ for $ε>0$ sufficiently small.

I think we can expand $f(x_k+εp)$ in a Taylor series about the point $x_k$ and look at $f(x_k+εp)-f(x_k)$, but what's then? (Taylor series: $f(x_0+p)=f(x_0)+p^T▽f(x_0)+(1/2)p^T▽^2f(x_0)p+...$
=> here is what's $p$)
 
Last edited:
Physics news on Phys.org
can anyone help me?
 
We ask that you do not bump a topic unless you have something to add, such as further information or other things you have tried to work the problem.

With most people busy with family and other things during the weekends, you will probably get responses beginning tomorrow, but I make no promises you understand. I am just trying to explain that our helpers are not online as much during the weekends.

No topics get ignored here, it just takes the right person (i.e. who knows how to help) to come along when they have time to be online.
 
ianchenmu said:
Prove that if $p^T▽f(x_k)<0$, then $f(x_k+εp)<f(x_k)$ for $ε>0$ sufficiently small.

I think we can expand $f(x_k+εp)$ in a Taylor series about the point $x_k$ and look at $f(x_k+εp)-f(x_k)$, but what's then? (Taylor series: $f(x_0+p)=f(x_0)+p^T▽f(x_0)+(1/2)p^T▽^2f(x_0)p+...$
=> here is what's $p$)

You have:
$f(x_k+εp)=f(x_k)+(εp)^T▽f(x_0)+(1/2)(εp)^T▽^2f(x_k)(εp)+... \qquad (1)$​

Let $b = p^T▽f(x_k)$, so $b < 0$.
Let $R=(1/2)(εp)^T▽^2f(x_k)(εp)+...$.

Then (1) becomes:
$f(x_k+εp)=f(x_k) + εb + R \qquad (2)$​

The absolute value of the remainder terms R is less than the absolute value of the first order term for $ε>0$ sufficiently small:
$|R| < |εb|$

$R < -εb$

$εb + R < 0 \qquad (3)$​

Combining (2) and (3):
$f(x_k+εp)=f(x_k) + εb + R < f(x_k)$ $\qquad \blacksquare$​
Btw, before I did not understand what p was, nor how $\nabla$ was intended.
Seeing no effort either I ignored this thread.
Apparently you added an extra explanation later, so here you go. :)
 
ILikeSerena said:
You have:
$f(x_k+εp)=f(x_k)+(εp)^T▽f(x_0)+(1/2)(εp)^T▽^2f(x_k)(εp)+... \qquad (1)$​

Let $b = p^T▽f(x_k)$, so $b < 0$.
Let $R=(1/2)(εp)^T▽^2f(x_k)(εp)+...$.

Then (1) becomes:
$f(x_k+εp)=f(x_k) + εb + R \qquad (2)$​

The absolute value of the remainder terms R is less than the absolute value of the first order term for $ε>0$ sufficiently small:
$|R| < |εb|$

$R < -εb$

$εb + R < 0 \qquad (3)$​

Combining (2) and (3):
$f(x_k+εp)=f(x_k) + εb + R < f(x_k)$ $\qquad \blacksquare$​
Btw, before I did not understand what p was, nor how $\nabla$ was intended.
Seeing no effort either I ignored this thread.
Apparently you added an extra explanation later, so here you go. :)

why $|R| < |εb|$? Is that simply because $ε>0$ is sufficiently small?
 
ianchenmu said:
why $|R| < |εb|$? Is that simply because $ε>0$ is sufficiently small?

Yes.
The remainder terms consist of higher powers in ε than the εb-term.
As long as the series converges the εb-term (which is non-zero) will be larger than R if ε is small enough.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K