Proving $\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$ with $a+b=ab$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The inequality $$\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$$ is proven under the condition that $a+b=ab$ for positive reals $a$ and $b$. The discussion highlights the importance of this condition in establishing the inequality. Participants, including greg1313 and MarkFL, contributed to a clear and structured solution, demonstrating the relationship between the variables effectively.

PREREQUISITES
  • Understanding of algebraic inequalities
  • Familiarity with the AM-GM inequality
  • Knowledge of symmetric functions
  • Basic skills in manipulating rational expressions
NEXT STEPS
  • Study the AM-GM inequality and its applications in proving inequalities
  • Explore symmetric functions and their properties in algebra
  • Learn about rational expressions and techniques for simplifying them
  • Investigate other inequalities involving parameters constrained by relationships like $a+b=ab$
USEFUL FOR

Mathematicians, students studying inequalities, and anyone interested in advanced algebraic techniques will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a$ amd $b$ be positive reals such that $a+b=ab$.

Prove that $$\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$$.
 
Mathematics news on Phys.org
anemone said:
Let $a$ amd $b$ be positive reals such that $a+b=ab$.

Prove that $$\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$$.

From the AM-GM inequality we have
$$\dfrac{a}{b^2+4}+\dfrac{b}{a^2+4}\ge2\sqrt{\dfrac{ab}{(a^2+4)(b^2+4)}}\quad(1)$$

We have equality when
$$\dfrac{a}{b^2+4}=\dfrac{b}{a^2+4}\implies a=b$$

With that equality and from $a+b=ab$, we derive $2a=a^2\implies a=b=2$.

Substituting this into $(1)$ we have
$$\min\left(\dfrac{a}{b^2+4}+\dfrac{b}{a^2+4}\right)=2\sqrt{\dfrac{2\cdot2}{(4+4)(4+4)}}=\dfrac12$$
$$\text{Q. E. D.}$$
 
My solution:

Let:

$$f(a,b)\equiv\frac{a}{b^2+4}+\frac{b}{a^2+4}$$

Using cyclic symmetry, we know the extremum occurs for:

$$a=b=2$$

Thus, the critical value is:

$$f(2,2)=\frac{2^2}{2^2+4}=\frac{1}{2}$$

If we pick another point on the constraint, such as:

$$(a,b)=\left(\frac{3}{2},3\right)$$

We find:

$$f\left(\frac{3}{2},3\right)=\frac{\dfrac{3}{2}}{3^2+4}+\frac{3}{\left(\dfrac{3}{2}\right)^2+4}=\frac{387}{650}>\frac{1}{2}$$

Hence, we may now assert:

$$f_{\min}=\frac{1}{2}$$
 
Thanks greg1313 and MarkFL for participating and the neat and well-written solution! Bravo!(Cool)

My solution:
$$\begin{align*}\frac{a}{b^2+4}+\frac{b}{a^2+4}&=\frac{a^2}{ab^2+4a}+\frac{b^2}{a^2b+4b}\\&\ge \frac{(a+b)^2}{ab^2+a^2b+4a+4b} \\&\ge \frac{(a+b)^2}{ab(a+b)+4(a+b)}\\& =\frac{a+b}{ab+4}\\&=\frac{ab}{ab+4}\,\,\,\text{since}\,\,\, a+b=ab\\&=\frac{1}{1+\frac{4}{ab}}\,\,\,\text{but}\,\,\, ab\ge 4\,\,\,\text{from}\,\,\, a+b=ab\ge 2\sqrt{ab}\\&\ge \frac{1}{1+\frac{4}{4}}=\frac{1}{2}\end{align*}$$
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
936
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K