MHB Proving $\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$ with $a+b=ab$

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion revolves around proving the inequality $\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$ under the condition that $a+b=ab$ for positive reals $a$ and $b$. Participants share their approaches and solutions, highlighting the importance of manipulating the given condition to derive the inequality. The conversation emphasizes the use of algebraic techniques and inequalities to establish the proof. The contributions from members enhance the understanding of the problem and its solution. The thread concludes with a sense of accomplishment in solving the inequality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a$ amd $b$ be positive reals such that $a+b=ab$.

Prove that $$\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$$.
 
Mathematics news on Phys.org
anemone said:
Let $a$ amd $b$ be positive reals such that $a+b=ab$.

Prove that $$\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$$.

From the AM-GM inequality we have
$$\dfrac{a}{b^2+4}+\dfrac{b}{a^2+4}\ge2\sqrt{\dfrac{ab}{(a^2+4)(b^2+4)}}\quad(1)$$

We have equality when
$$\dfrac{a}{b^2+4}=\dfrac{b}{a^2+4}\implies a=b$$

With that equality and from $a+b=ab$, we derive $2a=a^2\implies a=b=2$.

Substituting this into $(1)$ we have
$$\min\left(\dfrac{a}{b^2+4}+\dfrac{b}{a^2+4}\right)=2\sqrt{\dfrac{2\cdot2}{(4+4)(4+4)}}=\dfrac12$$
$$\text{Q. E. D.}$$
 
My solution:

Let:

$$f(a,b)\equiv\frac{a}{b^2+4}+\frac{b}{a^2+4}$$

Using cyclic symmetry, we know the extremum occurs for:

$$a=b=2$$

Thus, the critical value is:

$$f(2,2)=\frac{2^2}{2^2+4}=\frac{1}{2}$$

If we pick another point on the constraint, such as:

$$(a,b)=\left(\frac{3}{2},3\right)$$

We find:

$$f\left(\frac{3}{2},3\right)=\frac{\dfrac{3}{2}}{3^2+4}+\frac{3}{\left(\dfrac{3}{2}\right)^2+4}=\frac{387}{650}>\frac{1}{2}$$

Hence, we may now assert:

$$f_{\min}=\frac{1}{2}$$
 
Thanks greg1313 and MarkFL for participating and the neat and well-written solution! Bravo!(Cool)

My solution:
$$\begin{align*}\frac{a}{b^2+4}+\frac{b}{a^2+4}&=\frac{a^2}{ab^2+4a}+\frac{b^2}{a^2b+4b}\\&\ge \frac{(a+b)^2}{ab^2+a^2b+4a+4b} \\&\ge \frac{(a+b)^2}{ab(a+b)+4(a+b)}\\& =\frac{a+b}{ab+4}\\&=\frac{ab}{ab+4}\,\,\,\text{since}\,\,\, a+b=ab\\&=\frac{1}{1+\frac{4}{ab}}\,\,\,\text{but}\,\,\, ab\ge 4\,\,\,\text{from}\,\,\, a+b=ab\ge 2\sqrt{ab}\\&\ge \frac{1}{1+\frac{4}{4}}=\frac{1}{2}\end{align*}$$
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
866
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K