Proving $\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$ with $a+b=ab$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around proving the inequality $$\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$$ under the condition that $a+b=ab$, where $a$ and $b$ are positive real numbers. The focus is on the mathematical reasoning and potential solutions to this inequality.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Some participants reiterate the problem statement, emphasizing the condition $a+b=ab$.
  • One participant presents a solution, although the details of this solution are not included in the provided text.
  • Another participant expresses appreciation for the contributions of others, indicating engagement with the solutions presented.

Areas of Agreement / Disagreement

The discussion does not indicate any consensus on the proof or solution to the inequality, as only one solution is mentioned without further elaboration or critique.

Contextual Notes

The discussion lacks detailed mathematical steps or assumptions that may be necessary for a complete proof of the inequality.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a$ amd $b$ be positive reals such that $a+b=ab$.

Prove that $$\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$$.
 
Mathematics news on Phys.org
anemone said:
Let $a$ amd $b$ be positive reals such that $a+b=ab$.

Prove that $$\frac{a}{b^2+4}+\frac{b}{a^2+4}\ge \frac{1}{2}$$.

From the AM-GM inequality we have
$$\dfrac{a}{b^2+4}+\dfrac{b}{a^2+4}\ge2\sqrt{\dfrac{ab}{(a^2+4)(b^2+4)}}\quad(1)$$

We have equality when
$$\dfrac{a}{b^2+4}=\dfrac{b}{a^2+4}\implies a=b$$

With that equality and from $a+b=ab$, we derive $2a=a^2\implies a=b=2$.

Substituting this into $(1)$ we have
$$\min\left(\dfrac{a}{b^2+4}+\dfrac{b}{a^2+4}\right)=2\sqrt{\dfrac{2\cdot2}{(4+4)(4+4)}}=\dfrac12$$
$$\text{Q. E. D.}$$
 
My solution:

Let:

$$f(a,b)\equiv\frac{a}{b^2+4}+\frac{b}{a^2+4}$$

Using cyclic symmetry, we know the extremum occurs for:

$$a=b=2$$

Thus, the critical value is:

$$f(2,2)=\frac{2^2}{2^2+4}=\frac{1}{2}$$

If we pick another point on the constraint, such as:

$$(a,b)=\left(\frac{3}{2},3\right)$$

We find:

$$f\left(\frac{3}{2},3\right)=\frac{\dfrac{3}{2}}{3^2+4}+\frac{3}{\left(\dfrac{3}{2}\right)^2+4}=\frac{387}{650}>\frac{1}{2}$$

Hence, we may now assert:

$$f_{\min}=\frac{1}{2}$$
 
Thanks greg1313 and MarkFL for participating and the neat and well-written solution! Bravo!(Cool)

My solution:
$$\begin{align*}\frac{a}{b^2+4}+\frac{b}{a^2+4}&=\frac{a^2}{ab^2+4a}+\frac{b^2}{a^2b+4b}\\&\ge \frac{(a+b)^2}{ab^2+a^2b+4a+4b} \\&\ge \frac{(a+b)^2}{ab(a+b)+4(a+b)}\\& =\frac{a+b}{ab+4}\\&=\frac{ab}{ab+4}\,\,\,\text{since}\,\,\, a+b=ab\\&=\frac{1}{1+\frac{4}{ab}}\,\,\,\text{but}\,\,\, ab\ge 4\,\,\,\text{from}\,\,\, a+b=ab\ge 2\sqrt{ab}\\&\ge \frac{1}{1+\frac{4}{4}}=\frac{1}{2}\end{align*}$$
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
977
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K