Proving General Associativity for Group by induction

Click For Summary

Discussion Overview

The discussion revolves around proving the general associativity of a group operation using induction. Participants are exploring the implications of associativity in group theory, particularly focusing on how the expression ${a}_{1}\star {a}_{2} \star \dots \star {a}_{n}$ can be evaluated regardless of the bracketing of the terms.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Cbarker1 states the problem and outlines a base case for $n=3$, asserting that associativity holds true based on the definition of a group.
  • Another participant suggests that a lemma is needed, proposing that if two expressions are left-associated, their product equals the left-associated expression of the combined terms, indicating a need for strong induction on $n$.
  • Questions arise regarding the proof of the lemma and the definition of left-associated expressions, with participants discussing the implications of different forms of association.
  • There are suggestions to prove the lemma through examples for small values of $n$, emphasizing the importance of careful reasoning in the proof process.
  • Concerns are raised about the clarity and correctness of the proof steps, particularly regarding the use of propositions and the need for precise statements in mathematical writing.

Areas of Agreement / Disagreement

Participants express differing views on the clarity and correctness of the proof steps, with some questioning the definitions and logical flow of the arguments presented. There is no consensus on the validity of the proposed proof or the lemma, indicating ongoing debate.

Contextual Notes

Participants note the importance of careful definitions and the need for fully parenthesized expressions in proofs. There are also comments on the use of LaTeX formatting, highlighting potential misunderstandings in notation.

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

I am having some troubles with the problem. The problem states:

Let $(G,\star)$ be a group with ${a}_{1},{a}_{2},\dots, {a}_{n}$ in $G$. Prove using induction that the value of
${a}_{1}\star {a}_{2} \star \dots \star {a}_{n}$ is independent of how the expression is bracketed. My attempt

Base Case: We know that the definition of a group requires the associative property. So when $n=3$, associativity holds true.

Induction Hypothesis:
Assume $n>k$. (Here is where I am having troubles.)

Thanks,
Cbarker1
 
Physics news on Phys.org
I think this requires a lemma proved by ordinary induction on $n$: if $a_1\star\dots\star a_m$ and $a_{m+1}\star\dots\star a_{m+n}$ are left-associated, then their product equals the left-associated expression $a_1\star\dots\star a_{m+n}$.

Then in the proof of the main statement we break $a_1\star\dots\star a_n$ into a product of two shorter expressions, apply the inductive hypothesis to each of them and use the lemma. This requires strong induction on $n$.
 
How do we prove this lemma?

What does it mean to be left-associated?
 
I am calling expressions of the form $(\dots((a_1\star a_2)\star a_3)\star\dots\star a_{n-1})\star a_n$ left-associated.

Try proving the lemma yourself. You may consider examples for $n=1, 2, 3, 4$.
 
Evgeny.Makarov said:
I am calling expressions of the form $(\dots((a_1\star a_2)\star a_3)\star\dots\star a_{n-1})\star a_n$ left-associated.

Try proving the lemma yourself. You may consider examples for $n=1, 2, 3, 4$.
Suppose that ${a}_{1}\star {a}_{2}\star {a}_{3}...{a}_{m}$ and ${a}_{m+1}\star {a}_{m+2}...{a}_{m+n}$ are left-associated. Then, $({a}_{1} \star {a}_{2})\star ...)\star {a}_{m}$ and $({a}_{m+1} \star {a}_{m+2})...)\star {a}_{m+n}$. So then, $({a}_{1} \star {a}_{2})\star ...)\star {a}_{m}\star ({a}_{m+1} \star {a}_{m+2})...)\star {a}_{m+n}$. Therefore, we will get the following product ${a}_{1} \star {a}_{2}\star ...\star {a}_{m}\star {a}_{m+1} \star {a}_{m+2}...\star {a}_{m+n}$.

Is the proof corrected?

Thanks
Cbarker1
 
Cbarker1 said:
Suppose that ${a}_{1}\star {a}_{2}\star {a}_{3}...{a}_{m}$ and ${a}_{m+1}\star {a}_{m+2}...{a}_{m+n}$ are left-associated. Then, $({a}_{1} \star {a}_{2})\star ...)\star {a}_{m}$ and $({a}_{m+1} \star {a}_{m+2})...)\star {a}_{m+n}$.
"Then" must be followed by a proposition, i.e., something that is either true or false. Examples of propositions are: $x+y=z$, $x^2\ge0$, "$n$ is prime". In contrast, $(({a}_{1} \star {a}_{2})\star ...)\star {a}_{m}$ is an element of the group and as such is neither true nor false.

Cbarker1 said:
So then, $({a}_{1} \star {a}_{2})\star ...)\star {a}_{m}\star ({a}_{m+1} \star {a}_{m+2})...)\star {a}_{m+n}$.
Same remark. Besides, this expression is not fully parenthesized. The product of the two original expressions is $(\dots(a_1 \star a_2)\star\dots\star a_m)\star((\dots (a_{m+1} \star {a}_{m+2})\star\dots\star a_{m+n-1})\star {a}_{m+n})$.

Cbarker1 said:
Therefore, we will get the following product ${a}_{1} \star {a}_{2}\star ...\star {a}_{m}\star {a}_{m+1} \star {a}_{m+2}...\star {a}_{m+n}$.
How? That's the most important question of the proof. Have you done the examples carefully? Where exactly do you apply the inductive hypothesis?

Also, instead of "we will get" it is better to write a more precise statement, e.g., "the product equals...".

A remark about LaTeX. It is not necessary to put braces around an expression that is not an index (subscript). For example, {a}_{123} gives the same result as a_{123}. It is only necessary to put braces around an index if it consists of more than one character or command. For example, a_{m} is the same as a_m.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
8
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
748
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
740