MHB Proving Ideal Property of f(x)=0 for Every Rational x in $\mathcal{F}(\mathcal{R})$

Kiwi1
Messages
106
Reaction score
0
I am asked:

Prove that each of the following is an ideal of $\mathcal{F}(\mathcal{R})$:
a. The set of all f such that f(x)=0 for every rational x
b. The set of all f such that f(0)=0

My question is how do I know what the multiplicative operation is within the ring? Is multiplication the standard multiplication on real numbers or is it composition of functions?

I would expect it to be composition of functions but then if I choose g(x)=1 then I get g(f(x))=g(0) for any real x and this is not generally zero. So it must be the multiplication on reals.

Am I just supposed to know that?
 
Physics news on Phys.org
Hi Kiwi,

I don't know where this exercises come from, but it must be specified what the product is.

It is usual to consider $\mathcal{F}(\mathbb{R})$ the ring of real valued functions with pointwise product, and with this product your statements are true (they aren't with composition).

Try to prove it with pointwise multiplication and let us know if you encounter any other problem. ;)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top